
OpenSceneGraph
 Quick Start Guide

A Quick Introduction to the
Cross-Platform Open Source

 Scene Graph API

Paul Martz

Front cover image courtesy of Professor Mark Bryden and VRAC at Iowa State
University.

Back cover top two images were generated with 3DNature's NatureViewExpress and
Visual Nature Studio with Scene Express.

Back cover bottom image courtesy of Andes Computer Engineering.

The author and publisher have taken care in the publication of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for any damages arising out of the use of the information or programs contained
herein.

Many of the designations used by manufacturers and sellers to designate their products are
claimed as trademarks. Where the designations appear in this manual and the author was aware of
a trademark claim, the designations have been printed with initial capital letters or in all capitals.

OpenSceneGraph Quick Start Guide
Copyright © 2007 Computer Graphics Systems Development Corporation, Mountain View,
California. Reproduced by permission.

Preparation of this manuscript was in part sponsored by the United States Air Force under
Contract No.: FA8650-05-C-6537.

This book is protected by the Creative Commons Attribution-NonCommercial-ShareAlike 2.0
license. You may copy, distribute, transmit, and alter this work for non-commercial purposes
provided you attribute the work to Paul Martz and Skew Matrix Software LLC and license any
altered or derivative works under similar terms. For more information, view the following URL:

http://creativecommons.org/licenses/by-nc-sa/2.0/

For inquiries regarding exceptions to this license, please contact the author and publisher:

Paul Martz
Skew Matrix Software LLC
284 W. Elm St.
Louisville, CO 80027 USA
pmartz@skew-matrix.com

This book is dedicated to all developers who are new to
scene graph technology.

 OpenSceneGraph Quick Start Guide v

Contents

Preface ... ix

Acknowledgements..xiii

1 An Overview of Scene Graphs and OpenSceneGraph................1

1.1 History of OpenSceneGraph ..1

1.2 Installing OSG ..3
1.2.1 Hardware Requirements..4
1.2.2 Apple Mac OS X ..4
1.2.3 Fedora Linux...4
1.2.4 Microsoft Windows..5
1.2.5 Verifying Your OSG Installation ...5

1.3 Running osgviewer ...6
1.3.1 Getting Help ...7
1.3.2 Display Modes ..8
1.3.3 Environment Variables..8
1.3.4 Statistics Display...9
1.3.5 Recording an Animation ...10

1.4 Compiling OSG Applications ...11
1.4.1 Apple Mac OS X ..11
1.4.2 Fedora Linux...11
1.4.3 Microsoft Visual Studio...12

1.5 Introduction to Scene Graphs ..13
1.5.1 Scene Graph Features..14
1.5.2 How Scene Graphs Render...16

1.6 Overview of OpenSceneGraph ..17
1.6.1 Design and Architecture..18
1.6.2 Naming Conventions...19
1.6.3 Components..19

vi Contents

2 Building a Scene Graph... 31

2.1 Memory Management ..31
2.1.1 The Referenced Class...34
2.1.2 The ref_ptr<> Template Class ..34
2.1.3 Memory Management Examples..35

2.2 Geodes and Geometry ...38
2.2.1 An Overview of Geometry Classes..42

2.3 Group Nodes...45
2.3.1 The Child Interface ..45
2.3.2 The Parent Interface ..47
2.3.3 Transform Nodes ...48
2.3.4 The LOD Node..52
2.3.5 The Switch Node..54

2.4 Rendering State ...55
2.4.1 Attributes and Modes ..56
2.4.2 State Inheritance ...58
2.4.3 Example Code for Setting State ...59
2.4.4 Texture Mapping ..63
2.4.5 Lighting..67

2.5 File I/O..72
2.5.1 Interface...73
2.5.2 Plugin Discovery and Registration...74

2.6 NodeKits and osgText ...75
2.6.1 osgText Components...76
2.6.2 Using osgText ...76
2.6.3 Text Example Code ...80
2.6.4 The .osg File Format..81

3 Using OpenSceneGraph in Your Application............................. 87

3.1 Rendering ...87
3.1.1 The Viewer Class..88
3.1.2 CompositeViewer ...91

3.2 Dynamic Modification..91
3.2.1 Data Variance..92
3.2.2 Callbacks..93
3.2.3 NodeVisitors ...98
3.2.4 Picking... 100

 OpenSceneGraph Quick Start Guide vii

 vii

Appendix: Where to Go From Here ...107

Glossary...109

Bibliography ...113

Index ..115

Revision History...121

 OpenSceneGraph Quick Start Guide ix

Preface

This book is a concise introduction to OpenSceneGraph (OSG)—the cross-platform
open source scene graph application programmer interface (API). Specifically, this book
documents OSG v2.0. OSG plays a key role in the 3D application software stack. It’s
the middleware above the lower-level OpenGL hardware abstraction layer (HAL),
providing extensive higher-level rendering, I/O, and spatial organization functionality to
the 3D application.

For many years, OSG has thrived with only its source code as documentation. The
OSG distribution includes several examples that illustrate various rendering effects and
methods for integrating OSG with end-user applications. These illustrative examples
and the ability to step through core OSG in a debugger have enabled several developers
to become proficient in the OSG API.

Although source code has sufficed as documentation in the past, it is no substitute for
more traditional forms of documentation. Manuals lend themselves quite easily to
pedagogical instruments such as figures and tables, which are difficult to embed in
source code. As OSG has grown and become more complex, lack of formal
documentation has unacceptably lengthened the learning curve for new users. Prior to
this book’s release, the lack of formal OSG documentation has caused some developers
to wonder if OSG is mature and robust enough to support professional-quality
applications.

In response to repeated requests from the OSG community, both Don Burns and
Robert Osfield started to write documentation, only to drop the work to attend to more
pressing OSG business. In mid-2006, Don had a client, Computer Graphics Systems
Development Corporation (CGSD), whose contract called for OSG documentation, so
he subcontracted the documentation development to Paul Martz. Robert suggested that
the first OSG book should be freely available and concise in nature. Thus, the
OpenSceneGraph Quick Start Guide was born.

The OpenSceneGraph Quick Start Guide is a short programming guide that covers the basic
and essential elements of the OSG API. It is the first in a series of planned books to
document OSG with more comprehensive material to follow. The OpenSceneGraph Quick
Start Guide has the following goals.

• Provide new OSG developers with a quick and affordable introduction to
OSG basics.

x Preface

• Familiarize the reader with the OSG distribution and source code
organization.

• Illustrate proper use of the commonly used elements of the OSG API.

• Direct the reader to sources of more thorough documentation.

In the spirit of open source, the OpenSceneGraph Quick Start Guide is available for no
charge as a PDF file. However, you can contribute to the OSG community by
purchasing a softbound print copy. To place an online order of this book, visit the
Lulu.com Web site and search for OpenSceneGraph.

http://www.lulu.com

Proceeds from the sale of bound copies fund ongoing documentation revisions to
ensure that the manual is always up-to-date.

Regardless of whether you download this book for free or purchase a bound copy, your
feedback on the book is essential in ensuring this documentation remains current and
useful. Please post your comments to the osg-users email list. See the Appendix:
Where to Go From Here, for information on the osg-users email list.

For information about new revisions to the book, visit the OpenSceneGraph Books
Web site:

http://www.osgbooks.com/

This URL contains the most up-to-date information on obtaining the latest revision,
downloading the book’s example source code, and information on related publications.

Target Audience
This is a short book, and making it short was not an easy task. The scope is limited to a
very narrow set of useful OSG functionality, and just as important, the book targets a
specific set of readers.

This book is intended for software developers who are new to OSG and considering
using it in their application. This book doesn’t preclude a particular genre of application
software, but provides information that is useful to the visualization and simulation
markets, which traditionally are OSG’s strength.

OSG is a C++ API, so it is assumed that you have some knowledge of C++. In
particular, you should be familiar with C++ features, such as public and private access,
virtual functions, memory allocation, class derivation, and constructors and destructors.
OSG makes extensive use of the standard template library (STL), so you should be
familiar with STL constructs, especially list, vector, and map. Some familiarity with
design patterns as implemented in C++ is useful, but is not required.

You should be familiar and comfortable working with data structures, such as trees and
lists.

 OpenSceneGraph Quick Start Guide xi

 xi

If you are considering using OSG in your application, you are probably familiar with 3D
graphics. For this book, you should be familiar with OpenGL, the standard cross-
platform low-level 3D graphics API. You should know about different coordinate
spaces at the conceptual level and should be comfortable specifying three-dimensional
Cartesian coordinates as geometric vertex data. You should know that texture mapping
essentially applies an image to geometry, but you need not know the specifics of how
the graphics hardware accomplishes this.

Some linear algebra experience is helpful. You should know that 3D locations are
treated as vectors, and that graphics systems transform vectors by matrices as part of
the rendering process. You should know that matrix concatenation combines
transformations.

Recommended Reading
If you are a little rusty in any of the above areas, you might find the following list of
recommend reading material useful.

• OpenGL® Programming Guide, Fifth Edition, by OpenGL ARB, Dave Shreiner,
Mason Woo, Jackie Neider, and Tom Davis (Addison-Wesley) [ARB05]

• Geometric Tools for Computer Graphics, by Philip Schneider and David H. Eberly
(Morgan Kaufmann).

• Real-Time Rendering, Second Edition, by Tomas Akenine-Moller and Eric Haines
(AK Peters).

• Computer Graphics, Principles and Practice, Second Edition, by James D. Foley,
Andries van Dam, Steven K. Feiner, and John F. Hughes (Addison-Wesley).

• The C++ Programming Language, Third Edition, by Bjarne Stroustrup (Addison-
Wesley).

Organization of the Book
The OpenSceneGraph Quick Start Guide is composed of three main chapters and an
appendix.

Chapter 1, An Overview of Scene Graphs and OpenSceneGraph, opens with a brief
history of OSG’s origins, followed by instructions for obtaining and installing OSG and
how to use some examples and applications included in the OSG distribution. The
chapter includes an introduction to the concept of a scene graph, followed by an
overview of OSG and its organization.

In Chapter 2, Building a Scene Graph, you’ll get your hands dirty assembling OSG
data structures for storing and rendering geometry. Core OSG fundamentals, such as
referenced pointers, scene graph nodes, drawable geometry, and state (including texture
mapping and lighting) are described. This chapter also describes the osgText node kit
for quickly adding text to your scene, as well as file I/O for accessing stored scene

xii Preface

graph data and images. You’ll leave the chapter with a firm grasp of how to use OSG to
build a scene graph that displays a variety of geometry.

In Chapter 3, Using OpenSceneGraph in Your Application, you’ll learn to do just
that. The final chapter describes rendering, positioning and orienting the viewpoint, and
animating and dynamically modifying your scene graph.

Finally, the Appendix: Where to Go From Here, explains where you can find more
information about OSG and how you can become involved in the OSG community.

Conventions
This book uses the following style conventions:

• Bold—OSG classes and namespace names, OSG and OpenGL API methods
and entry points, OSG and OpenGL types.

• Italics—Variables, parameter names, arguments, matrices, and spatial
dimensions (such as x, y, and z).

• Monospace—Code listings, short code segments within a text paragraph,
enumerants, and constants.

Furthermore, URL Web addresses are set aside from the text and use a monospace
font, and italics denote new terminology.

About the Author
Paul Martz is the president of Skew Matrix Software LLC, which provides custom
software development, documentation, and developer training services. Paul has been
involved in 3D graphics software development since 1987 and is the author of OpenGL®
Distilled [Martz06]. He plays drums, provides music instruction, and is known to enjoy
an occasional game of poker.

 OpenSceneGraph Quick Start Guide xiii

Acknowledgements

Obviously, there would be no OpenSceneGraph Quick Start Guide if there were not an
OpenSceneGraph. Don Burns and Robert Osfield have been instrumental in OSG’s
genesis and development—thanks to them both. But I’d be remiss in not thanking the
entire OSG community, over 1700 strong, for their support and contribution to this
important open source standard.

I’d like to thank Robert Osfield of OpenSceneGraph Professional Services for
suggesting that the first OpenSceneGraph book should take the form of a free “quick
start” guide. I’d also like to thank Roy Latham of CGSD and Don Burns of Andes
Computer Engineering for funding the book’s initial revision.

Thanks again to Robert Osfield, and also Leandro Motta Barros, who both wrote partial
OSG documentation in the past. These efforts served as stepping stones for this book.

Thanks to Ben Discoe and the Virtual Terrain Project. This book’s example code uses a
tree image from their foliage library.

Many in the OSG community served as technical reviewers for this book and its
example code, or have provided other assistance. I’d like to thank Sohaib Athar, Bob
Buckley, Don Burns, Ellery Chan, Jan Ciger, Chris Dorosky, Edgar Ellis, Andreas
Goebel, Chris “Xenon” Hanson, Farshid Lashkari, Robert Osfield, Rick Pingry, Matt
Plumlee, Ovidiu Sabou, Eron Steger, Gordon Tomlinson, Laurens Voerman, and John
Wojnaroski. All of these individuals have contributed in some way, whether or not they
are aware of it.

Finally, I must thank Deedre Martz for providing professional copyediting services.

 OpenSceneGraph Quick Start Guide 1

1 An Overview of
Scene Graphs and
OpenSceneGraph

This first chapter provides you with an introduction to the concept of a scene graph.
You’ll learn about OSG’s history and organization, get a glimpse of its capabilities, learn
how to obtain and install OSG, and run a few simple examples. This chapter helps you
become familiar with scene graphs and OSG, but it contains no details on writing OSG-
based applications. Chapters 2 and 3 cover that topic in more detail. This chapter is
purely an introduction.

1.1 History of OpenSceneGraph
In 1997, Don Burns was employed as a software consultant at Silicon Graphics, Inc.
(now simply SGI) with an after-hours interest in hang gliding. Inevitably, his dual-
interest in computer graphics and hang gliding, along with his access to high-end
rendering hardware, resulted in his development of a hang gliding simulator that ran on
SGI Onyx systems using the (SGI proprietary) Performer scene graph.

Encouraged by fellow hang gliding enthusiasts to make his simulator available on more
affordable hardware, Don began experimenting with Mesa3D on a Linux system with
3dfx Voodoo hardware. While this system provided acceptable OpenGL support, scene
graphs were not available on Linux at that time. Don began to write SG, a simplified
Performer-like scene graph. His emphasis with SG was simplicity and ease of use.
Eventually, SGI ported Performer to Linux systems, and Don no longer needed his SG
scene graph.

Robert Osfield met Don in the early 1990s on an email list for hang gliding enthusiasts.
Robert had worked as a design consultant for a hang glider manufacturer, and had
experience modeling pitch stability. The two began to collaborate on improving the
simulator. Robert was a supporter of open source, and suggested continuing to develop
SG as a standalone open source scene graph project. As Don was content using
Performer, he had lost interest in SG, and transferred project leadership to Robert. The

2 An Overview of Scene Graphs and OpenSceneGraph

name was changed to OpenSceneGraph, and initially nine people were on the osg-users
email list.

In late 2000, Brede Johansen made the first major public contribution to
OpenSceneGraph when he added the OpenFlight OSG plugin module. He developed
the plugin while employed at Kongsberg Maritime Ship Simulation, Kongsberg,
Norway, which ships the OSG-based SeaView R5 visual system product.

In 2001, Robert began to develop OSG on a fulltime basis, doing business as
OpenSceneGraph Professional Services. At this time, he designed and implemented
many of the core features found in OSG today. One of Robert’s early clients was the
Glasgow Science Center’s Virtual Reality Theatre, which commissioned work that
eventually evolved into the Present3D application (3D-based presentation software).

Don moved on to Keyhole Technologies (now the Google Earth department of
Google) and subsequently resigned in 2001. He also formed his own company, Andes
Computer Engineering, based in San Jose, California, primarily to continue with OSG
development. The first OpenSceneGraph birds-of-a-feather (BOF) meeting occurred at
SIGGRAPH 2001. While only 12 people attended, the audience included
representatives from Magic Earth, who were looking for an open source scene graph
library to support their oil and gas application. They decided to contract with both Don
and Robert for support and development, and became OSG’s first paying customer.

Each year, attendance at the OSG BOF continued to grow. The osg-users email list
membership continues to grow at a phenomenal pace, as Figure 1-1 illustrates. When
this book went to press, the osg-users email list had more than 1700 subscribers.

OSG features and add-on libraries were developed at a rapid pace. In 2003, the OSG
companion library, Producer (originally called OSGMP), was created to provide a
multipipe rendering capability for Magic Earth. In 2004, large database paging, terrain
support, and shader support were added. 2006 included a complete revamp of the
OpenFlight plugin, as well as the creation of osgViewer, an integrated library for
managing and rendering views of a scene.

Figure 1-1
osg-users email list growth
The osg-users email list has grown significantly over time.

 OpenSceneGraph Quick Start Guide 3

Today, several hundred high-performance applications use OSG to manage rendering
complex 2D and 3D scenes. Though most OSG-based applications are in the
visualization and simulation industries, OSG is found in nearly every field that employs
3D graphics, including geographic information systems (GIS), computer-aided design
(CAD), modeling and digital content creation (DCC), database development, virtual
reality, animation, gaming, and entertainment.

1.2 Installing OSG
The previous section describes OSG’s origin. This section explains how to obtain and
install OSG, so you can run OSG examples and develop your own OSG applications.

OSG is under constant development; the OSG community fixes bugs and adds new
features to OSG on a daily basis. This book documents OSG v2.0, and describes
features that aren’t present in previous releases. Check the OSG Wiki Web site
[OSGWiki] for information on the latest available release.

The OSG Wiki Web site [OSGWiki] offers many packages and mechanisms for
downloading OSG:

• Runtime binaries—Use an OSG runtime binary package to install the OSG
libraries necessary to run OSG examples and applications.

• OSG source code—OSG developers should obtain a copy of the OSG source
code. OSG provides many mechanisms for obtaining a complete OSG source
code tree. You can obtain a compressed archive of a stable OSG release,
download a nightly tarball (a compressed archive of the current source) or use
Subversion (SVN) to check out the current source.

• Third-party dependencies—If you’re building OSG from source, some
optional components require non-OSG software packages, such as libTIFF,
libPNG, etc. If these third-party components aren’t present on your build
system, the optional OSG components fail to build.

• Sample dataset—This is a collection of 2D images, 3D models, and other data
files.

The following sections describe how to obtain and install the OSG runtime binaries.
Although OSG runs on a wide variety of platforms, only Apple Mac OS X, Fedora
Linux, and Microsoft Windows are covered here. For information on obtaining OSG
for other platforms, see the OSG Wiki Web site [OSGWiki].

If installable binaries aren’t available for your platform, or to create your own OSG
development kit, you’ll need to build OSG from source code. For information on
obtaining OSG source code, the third party dependencies, and the sample dataset, refer
to the OSG Wiki Web site [OSGWiki].

4 An Overview of Scene Graphs and OpenSceneGraph

1.2.1 Hardware Requirements
OSG runs on a wide variety of hardware platforms and operating systems, and should
run on most computer systems available today.

• Processor—OSG can be compiled to run on most contemporary CPUs. OSG
is thread-safe and can take advantage of multi-processor and dual core
architectures. OSG runs on both 32- and 64-bit processors.

• Graphics—Your system should feature an AGP or PCI-Express graphics card.
OSG runs on most professional- and consumer-grade graphics hardware
designed for modeling, simulation, and gaming. OSG requires graphics
hardware with robust OpenGL support. Obtain and install the latest OpenGL
device driver from your graphics hardware vendor. OSG’s onboard graphics
RAM requirements vary based on your usage, but 256MB is a good starting
point. OSG runs on multi-pipe systems, and can take advantage of multiple
graphics cards to increase rendering speed.

• RAM—The minimum system RAM requirement varies depending on the
amount and type of data you intend to display with OSG. 1GB is a good
starting point, but you might need more for larger data sets.

• Disk—Like RAM, the amount of secondary storage depends on your data
requirements. As with any application, fast RPM and large disk caches can
reduce data load times.

1.2.2 Apple Mac OS X
OSG for Apple Mac OS X is available from the OSG Wiki Web site [OSGWiki] as a
disk image (.dmg) file. It contains both run-time binaries and a full development
environment. See the OSG Apple QuickTime documentation [MacOSXTips] for
complete details. To install this package, perform the following steps.

1. From the OSG Wiki Web site [OSGWiki], select Downloads.

2. Download the OSG Universal Binaries for OSG v2.0. This is a .dmg file.

3. After the download completes, mount the .dmg file.

4. Drag the contents of the .dmg Frameworks folder into /Library/Frameworks.

5. In /Library/Application Support, create a new folder called OpenSceneGraph.
Drag PlugIns from the .dmg into this folder. (Note the mixed upper- and
lower-case spelling of “PlugIns”, required on some systems.)

1.2.3 Fedora Linux
OSG is also available for other flavors of Linux. Many Linux environments provide a
package installer interface that allows you to search for a package and install it. For

 OpenSceneGraph Quick Start Guide 5

example in Ubuntu Linux, run the Synaptic Package Installer and search for
OpenSceneGraph. The search should find the OSG runtime binary and development
environment packages, which you can select and install.

To obtain the latest OSG binaries for Fedora Core 4, visit the OSG Wiki Web site
[OSGWiki] and select Download. Under Binaries, select the Fedora Core 4 link.

1.2.4 Microsoft Windows
OSG run-time binaries for Microsoft Windows operating systems are available from the
OSG Wiki Web site [OSGWiki] as an InstallShield executable. To install this package,
perform the following steps.

1. From the OSG Wiki Web site [OSGWiki], select Downloads.

2. Download the OSG Win32 Binaries for OSG. This is an .exe file.

3. After the download completes, double-click the .exe file and follow the
installation instructions.

The default installation modifies environment variables in the registry. To make these
changes take effect, either log out and log back in, or reboot your system.

1.2.5 Verifying Your OSG Installation
After installing OSG, you should verify your installation. Perform the following steps:

1. Open a command shell prompt on your computer.

2. Enter the following command:

osgversion

This executes the osgversion application, which should output the OSG version
number, as follows:

OpenSceneGraph Library 2.0

This simple step verifies that the system is able to find OSG executables (your PATH is
set correctly), tells you what release version of OSG you’re running, and minimally
ensures that OSG is functional.

To verify that OSG can render on your system, execute the following command:

osglogo

This should display an image similar to Figure 1-2.

osglogo dynamically updates its scene to rotate the Earth. It also supports a trackball
interface that lets you spin the logo with the left mouse button.

6 An Overview of Scene Graphs and OpenSceneGraph

1.3 Running osgviewer
While the osgversion and osglogo applications allow you to verify your installation,
these programs have limited functionality. This section shows you how to run
osgviewer, OSG’s flexible and powerful model viewing tool. Load a simple model of a
cow and display it with the following command:

osgviewer cow.osg

Figure 1-3 shows the results.

The cow model is in OSG’s own .osg file format. However, osgviewer supports the
same file formats as OSG, many of which are enumerated in the OSG Plugins section
later in this chapter.

Like osglogo, osgviewer lets you interact with the model. By default, osgviewer exposes
a trackball-like interface. To rotate the cow model, drag with your left mouse button.
When you release the mouse button, the model continues to rotate. You can zoom in or
out using the right mouse button. Press the space bar to return to the initial view.

Figure 1-2
osglogo output
This figure displays the results of the osglogo command.

 OpenSceneGraph Quick Start Guide 7

1.3.1 Getting Help
While in osgviewer, press the ‘h’ key to display a list of key commands and their
functions. The ‘1’ through ‘5’ keys let you switch to different camera manipulation
modes, which modify the way that the mouse controls the camera position; for now,
stick with mode ‘1’, trackball mode, which is the default. Many of the key commands
control display modes, which the next section describes.

Press the Escape key to exit osgviewer and return to the command line prompt. Enter
the following command to see the osgviewer command line options:

osgviewer --help

This causes osgviewer to display all command line options. The following describes a
few of the commonly used options.

• --clear-color—This option allows you to set the clear, or background, color to
a specific rgba value. For example, if you issue the following command,
osgviewer renders with a white background and full alpha:
osgviewer --clear-color 1.0,1.0,1.0,1.0 cow.osg

Figure 1-3
osgviewer output
This figure displays the results of the command osgviewer cow.osg. The osgviewer
application displays a wide range of image and model files.

8 An Overview of Scene Graphs and OpenSceneGraph

• --image—This option causes osgviewer to load a single image and display it as
a texture on a quadrilateral primitive. The following command displays the
OSG logo from a .png file.

osgviewer --image osg256.png

In addition to command line arguments and key commands, you can also control
osgviewer with several environment variables. To see the full help text for osgviewer,
issue the following command at a shell prompt:

osgviewer --help-all

The following sections provide more details about using the osgviewer application.

1.3.2 Display Modes
Many of the osgviewer key commands specify display modes to control the model’s
appearance. Some of the commonly used commands are listed below.

• Polygon mode—Press the ‘w’ key repeatedly to cycle between wireframe,
point, and filled polygon rendering mode.

• Texture mapping—Press the ‘t’ key to toggle between textured and non-
textured.

• Lighting—Disable and enable lighting with the ‘l’ key.

• Backface culling—The ‘b’ key toggles backface culling. This doesn’t change
the appearance of the cow.osg model, but it could affect other models’
appearance and rendering performance.

• Fullscreen mode—Press the ‘f’ key to toggle between fullscreen and windowed
rendering.

Take some time and experiment with combinations of these osgviewer commands. For
example, to clearly see the polygonal structure of a model, go to wireframe mode, and
disable texture mapping and lighting.

1.3.3 Environment Variables
Although OSG and the osgviewer application support many environment variables,
there are two that you should become very familiar with. You will use them often when
working with OSG.

File Search Path
The OSG_FILE_PATH environment variable specifies the search path OSG uses
when loading image and model files. If you run osgviewer cow.osg and cow.osg isn’t

 OpenSceneGraph Quick Start Guide 9

in the current directory, OSG finds and loads cow.osg, because its directory path is
specified in OSG_FILE_PATH.

Your runtime installation sets the OSG_FILE_PATH variable. You can add more
directories to this variable. On Windows, separate each directory with a semicolon, and
use a color on other platforms. If the variable is empty or not set, OSG only searches
the current directory to locate image and model files.

Debug Message Display
OSG is capable of displaying a large amount of debugging information to std::cout.
This is useful in developing OSG applications, because it provides insight into what
OSG is doing. The OSG_NOTIFY_LEVEL environment variable controls how much
debugging information OSG displays. You can set it to one of seven values for varying
verbosity levels. ALWAYS (least verbose), FATAL, WARN, NOTICE, INFO,
DEBUG_INFO, and finally DEBUG_FP (most verbose).

For typical OSG development, set OSG_NOTIFY_LEVEL to NOTICE, and adjust
the value up or down the verbosity scale as necessary to receive more or less output.

1.3.4 Statistics Display
Particularly useful for performance measurements is the ‘s’ key, which uses the
StatsHandler class in the osgViewer library to gather and display rendering
performance information. The ‘s’ key cycles between four display modes.

1. Frame rate—osgviewer displays the number of frames rendered per second
(FPS).

2. Traversal time—osgviewer displays the amount of time spent in each of the
event, update, cull, and draw traversals, including a graphical display, as Figure
1-4 illustrates.

3. Geometry information—osgviewer displays the number of rendered
osg::Drawable objects, as well as the total number of vertices and primitives
processed per frame.

4. None—osgviewer disables the statistics display.

Pressing the ‘s’ key twice displays traversal time. Figure 1-4 illustrates the traversal time
graphical display.

The graphical display represents a series of rendered frames. Typically, rendering is
synchronized to the monitor refresh rate to avoid rendering artifacts, such as image
tearing. In Figure 1-4, the monitor refresh rate is 60Hz, so each frame occupies 1/60 of
a second, or about 16.67 milliseconds. This display illustrates how much time is spent in
the event, update, cull, and draw traversals. This feedback is essential for analyzing
performance problems and to help determine the rendering stage of application
performance bottlenecks.

10 An Overview of Scene Graphs and OpenSceneGraph

1.3.5 Recording an Animation
Developers require repeatable test cases to effectively tune and measure application
rendering performance. To facilitate performance tuning, osgviewer allows you to easily
record a camera motion sequence and play it back. This sequence is called an animation
path.

While osgviewer is running, press the ‘z’ key. This causes osgviewer to immediately
begin recording an animation path. Rotate the model and zoom in or out using the
mouse; OSG records all camera movements. Finally, press shift-‘z’. This stops recording
the animation path, and immediately plays it back. osgviewer animates the model using
the recorded camera movements.

Exit osgviewer with the Escape key, and get a list of files in your current directory. You
will see a new file, saved_animation.path. As its name implies, this file contains the
recorded animation path. osgviewer writes this file out when you press the shift-‘z’ key.
To play the animation path, issue the following command:

osgviewer –p saved_animation.path cow.osg

When playing an animation path, osgviewer displays the elapsed time for the sequence
to std::cout. If osgviewer doesn’t display this information in your shell, press Escape to

Figure 1-4
The traversal time graphical display
This shows a typical traversal time display for an application synchronized with a
60Hz monitor. The time spent in the event and update traversals is so insignificant
that it doesn’t appear in the graphical display. However, the cull and draw traversals,
at 5.68 and 3.42 milliseconds respectively, display clearly as cyan and dark yellow
bars spanning part of a single frame. The final brown bar indicates that the GPU
takes 5.38 milliseconds to process the rendering commands, as measured by
OpenGL.

 OpenSceneGraph Quick Start Guide 11

exit osgviewer. Set the OSG_NOTIFY_LEVEL environment variable to INFO and
restart osgviewer.

1.4 Compiling OSG Applications
To build OSG-based applications, you need an OSG development environment
consisting of header files and libraries. The OSG runtime binary distributions contain
header files and optimized libraries. To create debuggable libraries, download and build
the OSG source code. Obtain the OSG source from the OSG Wiki Web site
[OSGWiki], Downloads section. The OSG Wiki Web site contains instructions on how
to build OSG.

To build an OSG application, you’ll need to tell the compiler and linker where to find
header and library files. You also need to tell the linker which OSG library files to link
with. You might also need to set some platform-specific switches. The following
sections describe how to build OSG applications on several platforms.

If you fail to configure the compiler and linker with the correct options, your
application build fails with errors, such as “unable to open include file,” “unable to find
library file,” and “unresolved symbol.” If you encounter any of these errors, examine
the error message closely and verify that you’ve specified the correct compiler and linker
options.

1.4.1 Apple Mac OS X
The OSG binary distribution for MacOS X .dmg file contains an XcodeTemplates
folder. This folder contains an OSG Application Xcode template that allows you to
quickly build an OSG application using the Xcode development environment. To install
the OSG Application template, read the TemplateNotes.rtf file in the XcodeTemplates
folder. See the OSG Apple QuickTime documentation [MacOSXTips] for complete
details.

After installing the template, launch Xcode and create a New Project. In the New
Project dialog, scroll down and select OSG Application. The template creates an Xcode
project file configured to find OSG headers and libraries using the Xcode frameworks
system. It also includes a simple main.cpp that creates and renders a basic scene graph.
Your new OSG application should build and run, but you’ll need to modify the code to
add your own features.

1.4.2 Fedora Linux
Use the g++ command to compile and link OSG applications on Fedora Linux and
most other Linux and Unix systems.

12 An Overview of Scene Graphs and OpenSceneGraph

On the g++ command line, specify the OSG header file location using the –I option.
By default, OSG installs to /usr/local/include, so the include path on a gcc command
line appears as follows.

-I/use/local/include/OpenSceneGraph/include

Similarly, you need to tell the linker where to find the OSG libraries. By default, OSG
libraries install to /usr/local/lib, which the linker searches automatically. If OSG is
installed to another location, use the g++ -L option to specify the OSG library path.

Finally, tell the linker which OSG libraries to link with. As section 1.6.3 Components
describes, OSG is made up of several libraries, each providing different functionality.
To link an OSG application with the osgViewer, osgDB, osgUtil, and osg libraries,
specify four library options on the g++ command line.

-losgViewer –losgDB –losgUtil –losg

These libraries are an example, and the actual libraries your application links with
depend on what OSG functionality your applications use. You might need to link with
other libraries, such as the osgText, osgShadow, and osgGA libraries.

1.4.3 Microsoft Visual Studio
Microsoft’s Visual Studio development environment lets you create many project types.
The easiest way to create an OSG application is to create an empty Win32 console
application project.

Prior to Visual Studio v8, some compiler options were incompatible with OSG. Open
the Project Properties dialog and make sure that Enable Run-Time Type Info is set to
Yes. Also, set the Runtime Library to Multi-threaded DLL (or Multi-threaded Debug
DLL for debuggable executables).

Use the Project Properties dialog to tell the compiler where to find OSG header files.
By default, OpenSceneGraph installs to C:\Program Files, so add the following path to
the Additional Include Directories property of the C/C++ options.

C:\Program Files\OpenSceneGraph\include

Similarly, you need to tell the linker where to find the OSG libraries. Add the following
directory to the Additional Library Directories property of the Linker options.

C:\Program Files\OpenSceneGraph\lib

Finally, tell the linker which OSG libraries to link with. Add the library file names as
Additional Dependencies in the Project Property dialog Linker options. On Microsoft
Windows, OSG builds debug and release libraries with different names. For a release
build, using the osgViewer, osgDB, osgUtil, and osg libraries, add the following library
file names.

 OpenSceneGraph Quick Start Guide 13

osgViewer.lib osgDB.lib osgUtil.lib osg.lib

For a debug build, insert ‘d’ before the file extension.

osgViewerd.lib osgDBd.lib osgUtild.lib osgd.lib

These libraries are an example, and the actual libraries your application links with
depend on what OSG functionality your applications use. You might need to link with
other libraries, such as the osgText, osgShadow, and osgGA libraries.

1.5 Introduction to Scene Graphs
The previous sections focus on where OSG came from and how to install and run it on
your system. If you’ve followed the instructions in this chapter so far, you’ve succeeded
in creating a few interesting images on your screen using OSG. The rest of this book
explores OSG in increasing depth. The current section describes scene graphs at the
conceptual level. Section 1.6 Overview of OpenSceneGraph provides a high-level
overview of OSG’s feature set. Finally, Chapter 2, Building a Scene Graph, and
Chapter 3, Using OpenSceneGraph in Your Application, describe portions of
OSG’s application interface.

A scene graph is a hierarchical tree data structure that organizes spatial data for efficient
rendering. Figure 1-5 illustrates an abstract scene graph consisting of terrain, a cow, and
a truck.

The scene graph tree is headed by a top-level root node. Beneath the root node, group
nodes organize geometry and the rendering state that controls their appearance. Root
nodes and group nodes can have zero or more children. (However, group nodes with
zero children are essentially no-ops.) At the bottom of the scene graph, leaf nodes
contain the actual geometry that make up the objects in the scene.

Applications use group nodes to organize and arrange geometry in a scene. Imagine a
3D database containing a room with a table and two identical chairs. You can organize a
scene graph for this database in many ways. Figure 1-6 shows one example organization.
The root node has four group node children, one for the room geometry, one for the
table, and one for each chair. The chair group nodes are color-coded red to indicate that
they transform their children. There is only one chair leaf node because the two chairs
are identical—their parent group nodes transform the chair to two different locations to
produce the appearance of two chairs. The table group node has a single child, the table
leaf node. The room leaf node contains the geometry for the floor, walls, and ceiling.

Scene graphs usually offer a variety of different node types that offer a wide range of
functionality, such as switch nodes that enable or disable their children, level of detail
(LOD) nodes that select children based on distance from the viewer, and transform
nodes that modify transformation state of child geometry. Object-oriented scene graphs
provide this variety using inheritance; all nodes share a common base class with
specialized functionality defined in the derived classes.

14 An Overview of Scene Graphs and OpenSceneGraph

The large variety of node types and their implicit spatial organization ability provide data
storage features that are unavailable in traditional low-level rendering APIs. OpenGL
and Direct3D focus primarily on abstracting features found in graphics hardware.
Although graphics hardware allows storage of geometric and state data for later
execution (such as display lists or buffer objects), low-level API features for spatial
organization of that data are generally minimal and primitive in nature, and inadequate
for the vast majority of 3D applications.

Scene graphs are middleware, which are built on top of low-level APIs to provide
spatial organization capabilities and other features typically required by high-
performance 3D applications. Figure 1-7 illustrates a typical OSG application stack.

1.5.1 Scene Graph Features
Scene graphs expose the geometry and state management functionality found in low-
level rendering APIs, and provide additional features and capabilities, such as the
following:

Figure 1-5
A simple, abstract scene graph
To render a scene consisting of terrain, a cow, and a truck, the scene graph takes the
form of a top-level node with three child nodes. Each child node contains the
geometry to draw its object.

 OpenSceneGraph Quick Start Guide 15

• Spatial organization—The scene graph tree structure lends itself naturally to
intuitive spatial organization.

• Culling—View frustum and occlusion culling on the host CPU typically
reduces overall system load by not processing geometry that doesn’t appear in
the final rendered image.

Figure 1-7
The 3D application stack
Rather than interface directly with the low-level rendering API, many 3D applications
require additional functionality from a middleware library, such as OpenSceneGraph.

Figure 1-6
A typical scene graph
Group nodes can have several children, and allow applications to logically organize
geometric and state data. In this case, the two chair group nodes translate their single
child to two different locations, producing the appearance of two chairs.

16 An Overview of Scene Graphs and OpenSceneGraph

• LOD—Viewer-object distance computation on bounding geometry allows
objects to efficiently render at varying levels of detail. Furthermore, portions
of a scene can load from disk when they are within a specified viewer distance
range, and page out when they are beyond that distance.

• Translucency—Correct and efficient rendering of translucent (non-opaque)
geometry requires all translucent geometry to render after all opaque geometry.
Furthermore, translucent geometry should be sorted by depth and rendered in
back-to-front order. These operations are commonly supported by scene
graphs.

• State change minimization—To maximize application performance, redundant
and unnecessary state changes should be avoided. Scene graphs commonly
sort geometry by state to minimize state changes, and OpenSceneGraph’s state
management facilities eliminate redundant state changes.

• File I/O—Scene graphs are an effective tool for reading and writing 3D data
from disk. Once loaded into memory, the internal scene graph data structure
allows the application to easily manipulate dynamic 3D data. Scene graphs can
be an effective intermediary for converting from one file format to another.

• Additional high-level functionality—Scene graph libraries commonly provide
high-level functionality beyond what is typically found in low-level APIs, such
as full-featured text support, support for rendering effects (such as particle
effects and shadows), rendering optimizations, 3D model file I/O support,
and cross-platform access to input devices and render surfaces.

Nearly all 3D applications require some of these features. As a result, developers who
build their applications directly on low-level APIs typically resort to implementing many
of these features, which increases development costs. Using an off-the-shelf scene graph
that already fully supports such features enables rapid application development.

1.5.2 How Scene Graphs Render
A trivial scene graph implementation allows applications to store geometry and execute
a draw traversal, during which all geometry stored in the scene graph is sent to the
hardware as OpenGL commands. However, such an implementation lacks many of the
features described in the previous section. To allow for dynamic geometry updates,
culling, sorting, and efficient rendering, scene graphs typically provide more than a
simple draw traversal. In general, there are three types of traversals:

• Update—The update traversal (sometimes referred to as the application
traversal) allows the application to modify the scene graph, which enables
dynamic scenes. Updates are accomplished either directly by the application or
with callback functions assigned to nodes within the scene graph. Applications
use the update traversal to modify the position of a flying aircraft in a flight
simulation, for example, or to allow user interaction using input devices.

 OpenSceneGraph Quick Start Guide 17

• Cull—During the cull traversal, the scene graph library tests the bounding
volumes of all nodes for inclusion in the scene. If a leaf node is within the
view, the scene graph library adds leaf node geometry references to a final
rendering list. This list is sorted by opaque versus translucent, and translucent
geometry is further sorted by depth.

• Draw—In the draw traversal (sometimes referred to as the render traversal),
the scene graph traverses the list of geometry created during the cull traversal
and issues low-level graphics API calls to render that geometry.

OSG includes a fourth traversal, the event traversal, which processes input and other
events each frame, just before the update traversal.

Figure 1-8 illustrates these traversals.

Typically, these three traversals are executed once for each rendered frame. However,
some rendering situations require multiple simultaneous views of the same scene. Stereo
rendering and multiple display systems are two examples. In these situations, the update
traversal is executed once per frame, but the cull and draw traversals execute once per
view per frame. (That’s twice per frame for simple stereo rendering, and once per
graphics card per frame on multiple display systems.) This allows systems with multiple
processors and graphics cards to process the scene graph in parallel. The cull traversal
must be a read-only operation to allow for multithreaded access.

1.6 Overview of OpenSceneGraph
OSG is a set of open source libraries that primarily provide scene management and
graphics rendering optimization functionality to applications. It’s written in portable

Figure 1-8
Scene graph traversals
Rendering a scene graph typically requires three traversals. In (a), the update
traversal modifies geometry, rendering state, or node parameters to ensure the
scene graph is up-to-date for the current frame. In (b), the cull traversal checks for
visibility, and places geometry and state references in a new structure (called the
render graph in OSG). In (c), the draw traversal traverses the render graph and
issues drawing commands to the graphics hardware.

18 An Overview of Scene Graphs and OpenSceneGraph

ANSI C++ and uses the industry standard OpenGL low-level graphics API. As a result,
OSG is cross platform and runs on Windows, Mac OS X, and most UNIX and Linux
operating systems. Most of OSG operates independently of the native windowing
system. However, OSG includes code to support some windowing system specific
functionality, such as input devices, window creation, and PBuffers.

OSG is open source and is available under a modified GNU Lesser General Public
License, or Library GPL (LGPL) software license. OSG’s open source nature has many
benefits:

• Improved quality—OSG is reviewed, tested, and improved by many members
of the OSG community. Over 250 developers contributed to OSG v2.0.

• Improved application quality—To produce quality applications, application
developers need intimate knowledge of the underlying middleware. If the
middleware is closed source, this information is effectively blocked and limited
to vendor documentation and customer support. Open source allows
application developers to review and debug middleware source code, which
allows free access to code internals

• Reduced cost—Open source is free, eliminating the up-front purchase price.

• No intellectual property issues—There is no way to hide software patent
violations in code that is open source and easily read by all.

OSG support is easy to find by subscribing to the osg-users email list or by contracting
with professional support. For more information, see the Appendix: Where to Go
From Here.

1.6.1 Design and Architecture
OSG is designed up front for portability and scalability. As a result, it is useful on a wide
variety of platforms, and renders efficiently on a large number and variety of graphics
hardware. OSG is designed to be both flexible and extensible to allow adaptive
development over time. As a result, OSG can meet customer needs as they arise.

To enable these design criteria, OSG is built with the following concepts and tools:

• ANSI standard C++

• C++ Standard Template Library (STL)

• Design patterns [Gamma95]

These tools allow developers using OSG to develop on the platform of their choice and
deploy on any platform the customer requires.

 OpenSceneGraph Quick Start Guide 19

1.6.2 Naming Conventions
The following list enumerates the OSG source code naming conventions. These
conventions are not always strictly enforced. (The OSG plugins, for example, contain
many convention violations.)

• Namespaces—OSG namespace names start with a lower-case letter, but can
be upper case for clarity. Examples: osg, osgSim, osgFX.

• Classes—OSG class names start with an upper-case letter. If the class name is
composed of multiple words, each word starts with an upper-case letter.
Examples: MatrixTransform, NodeVisitor, Optimizer.

• Class methods—Names of methods within an OSG class start with a lower-
case letter. If the method name is composed of multiple words, each additional
word starts with an upper-case letter. Examples: addDrawable(),
getNumChildren(), setAttributeAndModes().

• Class member variables—Names of member variables within a class use the
same convention as method names.

• Templates—OSG template names are lower case with multiple words
separated by underscores. Examples: ref_ptr<>, graph_array<>,
observer_ptr<>.

• Statics—Static variables and functions begin with s_ and otherwise use the
same naming conventions as class member variables and methods. Examples:
s_applicationUsage, s_ArrayNames().

• Globals—Global class instances begin with g_. Examples: g_NotifyLevel,
g_readerWriter_BMP_Proxy.

1.6.3 Components
The OSG runtime exists as a set of dynamically loaded libraries (or shared objects) and
executables. These libraries fall into five conceptual categories:

• The Core OSG libraries provide essential scene graph and rendering
functionality, as well as additional functionality that 3D graphics applications
typically require.

• NodeKits extend the functionality of core OSG scene graph node classes to
provide higher-level node types and special effects.

• OSG plugins are libraries that read and write 2D image and 3D model files.

• The interoperability libraries allow OSG to easily integrate into other
environments, including scripting languages such as Python and Lua.

20 An Overview of Scene Graphs and OpenSceneGraph

• An extensive collection of applications and examples provide useful
functionality and demonstrate correct OSG usage.

Figure 1-9 illustrates OSG’s architectural organization. The following sections discuss
these libraries in more detail.

Core OSG
Core OSG provides core scene graph functionality, classes, and methods for operating
on the scene graph, additional application functionality typically required by 3D graphics
applications, and access to the OSG plugins for 2D and 3D file I/O. It consists of four
libraries:

• The osg library—This library contains the scene graph node classes that your
application uses to build scene graphs. It also contains classes for vector and
matrix math, geometry, and rendering state specification and management.
Other classes in osg provide additional functionality typically required by 3D
applications, such as argument parsing, animation path management, and error
and warning communication.

Figure 1-9
OSG architecture
The Core OSG libraries provide functionality to both the application and the
NodeKits. Together, the Core OSG libraries and NodeKits make up the OSG API.
One of the Core OSG libraries, osgDB, provides access to 2D and 3D file I/O by
managing the OSG plugins.

 OpenSceneGraph Quick Start Guide 21

• The osgUtil library—This utility library contains classes and functions for
operating on a scene graph and its contents, gathering statistics and optimizing
a scene graph, and creating the render graph. There are also classes for
geometric operations, such as Delaunay triangulation, triangle stripification,
and texture coordinate generation.

• The osgDB library—This library contains classes and functions for creating
and rendering 3D databases. It contains a registry of OSG plugins for 2D and
3D file I/O, as well as a class for accessing those plugins. The osgDB database
pager supports dynamic loading and unloading of large database segments.

• The osgViewer library—New in OSG v2.0, this library contains classes that
manage views into the scene. osgViewer integrates OSG with a wide variety of
windowing systems.

The v2.0 release contains a library called osgGA for adaptation of GUI events.
However, in the near future, OSG will be redesigned to move portions of osgGA
functionality into osgViewer, and eliminate it as a standalone library.

The following sections discuss the four core libraries in detail.

The osg Library
The osg library is the heart of OpenSceneGraph. It defines the core nodes that make up
the scene graph, as well as several additional classes that aid in scene graph management
and application development. Some of these classes are described briefly below.
Chapter 2 covers them in greater detail, and shows you how to use them in your
application.

Scene Graph Classes
Scene graph classes aid in scene graph construction. All scene graph classes in OSG are
derived from osg::Node. Conceptually, root, group, and leaf nodes are all different
node types. In OSG, these are all ultimately derived from osg::Node, and specialized
classes provide varying scene graph functionality. Also, the root node in OSG is not a
special node type; it’s simply an osg::Node that does not have a parent.

The osg Library

Namespace: osg

Header files: <OSG_DIR>/include/osg

Windows library files: osg.dll and osg.lib

Linux library file: libosg.so

22 An Overview of Scene Graphs and OpenSceneGraph

• Node—The Node class is the base class for all nodes in the scene graph. It
contains methods to facilitate scene graph traversals, culling, application
callbacks, and state management.

• Group—The Group class is the base class for any node that can have
children. It is a key class in the spatial organization of scene graphs.

• Geode—The Geode (or Geometry Node) class corresponds to the leaf node in
OSG. It has no children, but contains osg::Drawable objects (see below) that
contain geometry for rendering.

• LOD—The LOD class displays its children based on their distance to the
view point. This is commonly used to create a varying levels of detail for
objects in a scene.

• MatrixTransform—The MatrixTransform class contains a matrix that
transforms the geometry of its children, allowing scene objects to be rotated,
translated, scaled, skewed, projected, etc.

• Switch—The Switch class contains a Boolean mask to enable or disable
processing of its children.

This is an incomplete list of OSG node types. Other node types exist, such as
Sequence and PositionAttitudeTransform. Refer to the osg library header files for
information on these node types.

Geometry Classes
The Geode class is the OSG leaf node, and it contains geometric data for rendering.
Use the following classes to store geometric data in a Geode.

• Drawable—The Drawable class is the base class for storing geometric data,
and Geode stores them in a std::list<osg::Drawable>. Drawable is a pure
virtual class and can’t be instantiated directly. You must use a derived class,
such as Geometry or ShapeDrawable (which allows your application to draw
predefined shapes such as spheres, cones, and boxes).

• Geometry—The Geometry class, in conjunction with the PrimitiveSet class,
act as high-level wrappers around the OpenGL vertex array functionality.
Geometry stores the vertex arrays vertex, texture coordinate, color, and
normal arrays.

• PrimitiveSet—The PrimitiveSet class provides high-level support for the
OpenGL vertex array drawing commands. Use this class to specify the types
of primitives to draw from the data stored in the associated Geometry class.

• Vector classes (Vec2, Vec3, etc.)—OSG provides a set of predefined 2-, 3-,
and 4-element vectors of type float or double. Use these vectors to specify
vertices, colors, normals, and texture coordinates.

 OpenSceneGraph Quick Start Guide 23

• Array classes (Vec2Array, Vec3Array, etc.)—OSG defines several commonly
used array types, such as Vec2Array for texture coordinates. When specifying
vertex array data, your application stores geometric data in these arrays before
passing them to Geometry objects.

This might sound very confusing, but it can be summarized as follows: Geode objects
are leaf nodes in the scene graph that store Drawable objects. Geometry (one type of
Drawable) stores vertex array data and vertex array rendering commands specific to
that data. The data itself is composed of arrays of vectors. Chapter 2, Building a
Scene Graph, covers this in greater detail.

State Management Classes
OSG provides a mechanism for storing the desired OpenGL rendering state in the
scene graph. During the cull traversal, geometry with identical states is grouped together
to minimize state changes. During the draw traversal, the state management code keeps
track of the current state to eliminate redundant state changes.

Unlike other scene graphs, OSG allows state to be associated with any scene graph
node, and state is inherited hierarchically during a traversal.

• StateSet—OSG stores a collection of state values (called modes and
attributes) in the StateSet class. Any osg::Node in the scene graph can have a
StateSet associated with it.

• Modes—Analogous to the OpenGL calls glEnable() and glDisable(), modes
allow you to turn on and off features in the OpenGL fixed-function rendering
pipeline, such as lighting, blending, and fog. Use the method
osg::StateSet::setMode() to store a mode in a StateSet.

• Attributes—Attributes store state parameters, such as the blending function,
material properties, and fog color. Use the method
osg::StateSet::setAttribute() to store an attribute in a StateSet.

• Texture attributes and modes—These attributes and modes apply to a specific
texture unit in OpenGL multitexturing. Unlike OpenGL, there is no default
texture unit; your application must supply the texture unit when setting texture
attributes and modes. To set these state values and specify their texture unit,
use the StateSet methods setTextureMode() and setTextureAttribute().

• Inheritance flags—OSG provides flags for controlling how state is inherited
during a scene graph traversal. By default, state set in a child node overrides
the same state set in a parent node. However, you can force parent state to
override child node state, and you can specify that child state be protected
from parent overriding.

This state system has proven itself to be very flexible. All new features added to the
OpenGL specification during OSG’s lifetime, including the addition of the OpenGL

24 An Overview of Scene Graphs and OpenSceneGraph

Shading Language [Rost06], fits easily into the OSG state system. Section 2.4
Rendering State describes state topics in greater detail.

Utilities and Other Classes
Finally, the osg library contains several useful classes and utilities. Some of these deal
with the OSG reference-counted memory scheme, which helps avoid memory leaks by
deleting unreferenced memory. Chapter 2, Building a Scene Graph, discusses
reference-counted memory in detail.

• Referenced—The Referenced class is the base class for all scene graph
nodes and many other objects in OSG. It contains a reference count to track
memory usage. If an object is of a type derived from Referenced and its
reference count reaches zero, its destructor is called and memory associated
with the object is deleted.

• ref_ptr<>—The ref_ptr<> template class defines a smart pointer to its
template argument. The template argument must be derived from Referenced
or support an identical reference counting interface. When the address of an
object is assigned to a ref_ptr<>, the object reference count automatically
increments. Similarly, clearing or deleting a ref_ptr<> decrements the object
reference count.

• Object—The pure virtual Object class is the base class for any object in OSG
that requires I/O support, cloning, and reference counting. All node classes
and several other objects in OSG are derived from Object.

• Notify—The osg library supplies a set of functions for controlling debug,
warning, and error output. You control the amount of output by specifying
one of the NotifySeverity enumerant values. Most code modules within OSG
display notification messages.

The osg library contains several other classes that this section doesn’t mention. Refer to
the osg library source and header files to learn about other classes and features.

The osgUtil Library
The osgUtil library is a broad collection of utilities for processing a scene graph and
modifying the geometry within it.

The osgUtil library is probably best known for the set of classes that support the
update, cull, and draw traversals. In a typical OSG application, these traversals are
handled by higher-level support classes, such as osgViewer::Viewer, and you don’t
have to interact with them directly.

 OpenSceneGraph Quick Start Guide 25

Intersection
Typically, 3D applications need to support user interaction or selection, such as picking.
The osgUtil library efficiently supports picking with a variety of classes that test the
scene graph for intersection.

• Intersector—This is a pure virtual class that defines an interface for
intersection testing. The osgUtil library derives several classes from
Intersector, one for each type of geometry (line segment, plane, etc.). To
perform an intersection test, your application instantiates one of the classes
derived from Intersector, passes it to an instance of IntersectionVisitor, and
queries it for intersection results.

• IntersectionVisitor—The IntersectionVisitor class searches a scene graph
for nodes that intersect a specified piece of geometry. Classes derived from
Intersector perform the actual intersection tests.

• LineSegmentIntersector—Derived from Intersector, the
LineSegmentIntersector class tests for intersections between a specified line
segment and a scene graph, and provides methods for the application to query
the results.

• PolytopeIntersector—Like LineSegmentIntersector, the
PolytopeIntersector class tests for intersections against a polytope defined by
a list of planes. This class is especially useful for picking, in which the polytope
defines a bounded area in world space around the mouse-click point.

• PlaneIntersector—Like LineSegmentIntersector, the PlaneIntersector
class tests for intersections against a plane that is bounded by a list of planes.

Optimization
The scene graph data structure is ideally suited for optimization and easy statistics
gathering. The osgUtil library contains classes that traverse the scene graph to modify it
for optimal rendering and gather statistical data about its contents.

The osgUtil Library

Namespace: osgUtil

Header files: <OSG_DIR>/include/osgUtil

Windows library files: osgUtil.dll and osgUtil.lib

Linux library file: libosgUtil.so

26 An Overview of Scene Graphs and OpenSceneGraph

• Optimizer—As its name implies, the Optimizer class optimizes the scene
graph. Its behavior is controlled by a set of enumerant flags, which each
indicate a specific type of optimization to be performed. For example, the
FLATTEN_STATIC_TRANSFORMS flag transforms geometry by non-dynamic
Transform nodes, which optimizes rendering by eliminating modifications to
the OpenGL model-view matrix stack.

• Statistics and StatsVisitor—To properly tune a 3D application, a developer
must have as much information as possible about the scene graph. The
StatsVisitor class returns the amount and type of nodes in a scene graph, and
the Statistics class returns the amount and type of geometry rendered.

Geometry Manipulation
Many 3D applications require modification of loaded geometry to achieve desired
performance or rendering results. The osgUtil library contains classes to provide several
types of common geometrical operations.

• Simplifier—Use the Simplifier class to reduce the amount of geometry in a
Geometry object. This can aid in the automatic construction of lower levels of
detail.

• Tessellator—OpenGL doesn’t directly support concave or complex
polygons. The Tessellator class generates an osg::PrimitiveSet from a list of
vertices describing such a polygon.

• DelaunayTriangulator—As its name implies, this class implements the
Delaunay triangulation algorithm, which generates a set of triangles from a
collection of vertices.

• TriStripVisitor—In general, strip primitives render more efficiently than
individual primitives due to vertex sharing. The TriStripVisitor class traverses
a scene graph and converts polygonal primitives to triangle and quadrilateral
strips.

• SmoothingVisitor—The SmoothingVisitor class generates per vertex
normals, which are the average of the normals for all facets sharing that vertex.

• Texture map generation—The osgUtil library contains support routines to aid
in creating reflection maps, half-way vector maps, and specular highlight maps.
There is also a TangentSpaceGenerator class that creates arrays of per-vertex
vectors to aid in bump mapping.

The osgUtil library contains several other classes, which aren’t mentioned in this
section. Refer to the osgUtil library source and header files to learn about other classes
and features.

 OpenSceneGraph Quick Start Guide 27

The osgDB Library
The osgDB library allows applications to load, use, and write 3D databases. The osgDB
plugin architecture provides support for a wide variety of common 2D image and 3D
model file formats. The osgDB maintains a registry of and oversees access to the loaded
OSG plugins.

OSG supports its own file formats. .osg is a plain ASCII text description of a scene
graph, and .osga is an archive (or group) of .osg files. The osgDB library contains
support code for these file formats. (OSG also supports a binary .ive format.)

Large 3D terrain databases are often created in sections that tile together. In this case,
applications require that portions of the database load from file in a background thread
without interrupting rendering. The osgDB::DatabasePager provides this
functionality.

The osgViewer Library
The osgViewer library defines several viewer classes that integrate OSG with a wide range
of windowing toolkits, including AGL/CGL, Cocoa, FLTK, Fox, MFC, Qt, SDL,
Win32, WxWindows, and X11. The viewer classes support single window / single view
applications, as well as multithreaded applications using multiple views and render
surfaces. All viewer classes support camera manipulation, event handling , and support
for the osgDB::DatabasePager. The osgViewer library contains two viewer classes
that your application can use.

The osgViewer Library

Namespace: osgViewer

Header files: <OSG_DIR>/include/osgViewer

Windows library files: osgViewer.dll and osgViewer.lib

Linux library file: libosgViewer.so

The osgDB Library

Namespace: osgDB

Header files: <OSG_DIR>/include/osgDB

Windows library files: osgDB.dll and osgDB.lib

Linux library file: libosgDB.so

28 An Overview of Scene Graphs and OpenSceneGraph

• Viewer—The Viewer class can manage multiple synchronized cameras to
render a single view spanning multiple monitors. Viewer creates its own
window(s) and graphics context(s) based on the underlying graphics system
capabilities, so a single Viewer-based application executable runs on single or
multiple display systems.

• CompositeViewer—The CompositeViewer class supports multiple views
into the same scene and multiple cameras with different scenes. You can feed
the results of one rendering into another by specifying the render order of
each view. Use CompositeViewer to create HUDs, prerender textures, and
display multiple views in a single window

The osgViewer library contains additional support classes for statistics display, window
abstraction, and scene handling.

NodeKits
NodeKits extend the concept of Node, Drawable, and StateAttribute objects, and
can be thought of as extensions to the osg library in core OSG. NodeKits must do
more than derive from an OSG class. They must also provide a dot OSG wrapper (an
OSG plugin to support reading from and writing to an .osg file). As a result, a NodeKit
is composed of two libraries the NodeKit itself, and a dot OSG wrapper plugin library.

OSG v2.0 has six NodeKits.

• The osgFX library—This NodeKit provides additional scene graph nodes for
rendering special effects, such as anisotropic lighting, bump mapping, and
cartoon shading.

• The osgManipulator library—This NodeKit contains several classes for
manipulating selected objects in the scene graph.

• The osgParticle library—This NodeKit provides particle-based rendering
effects, such as explosions, fire, and smoke.

• The osgSim library—This NodeKit supports the special rendering
requirements of simulation systems and OpenFlight databases, such as terrain
elevation query classes, light point nodes, and DOF transformation nodes.

• The osgText library—This NodeKit is a powerful tool for adding text to your
scene. It fully supports all TrueType fonts.

• The osgTerrain library—This NodeKit provides support for rendering height
field data.

• The osgShadow library—This NodeKit provides a framework for supporting
shadow rendering techniques.

It is beyond the scope of this book to cover in detail the extensive capabilities of the
OSG NodeKits. Section 2.6 NodeKits and osgText, explains the basics of using the

 OpenSceneGraph Quick Start Guide 29

osgText NodeKit, however. What you learn about using osgText in Chapter 2 should
empower you to explore and use the other NodeKits.

OSG Plugins
The core OSG libraries support file I/O for a large variety of 2D image and 3D model
file formats. The osgDB::Registry automatically manages the plugin libraries. Your
application simply makes a function call to read or write a file, and as long as an
appropriate plugin is available, the Registry finds and uses it.

The osg library allows your application to build scene graphs directly in a node-by-node
fashion. In contrast, OSG plugins allow your application to load entire scene graphs
from disk with just a few lines of code or load scene graph parts that your application
can arrange into a complete scene graph.

OSG v2.0 supports a selection of common 2D image file formats, including .bmp, .dds,
.gif, .jpeg, .pic, .png, .rgb, .tga, and .tiff. OSG supplies a QuickTime plugin for loading
movie files, and a plugin for loading font files using the FreeType library.

OSG’s support for 3D model file formats is comprehensive and includes the following
common file formats: 3D Studio Max (.3ds), Alias Wavefront (.obj), Carbon Graphics’
Geo (.geo), COLLADA (.dae), ESRI Shapefile (.shp), NewTek LightWave (.lwo and
.lws), OpenFlight (.flt), Quake (.md2), and Terrex TerraPage (.txp).

In addition to the standard formats listed above, OSG defines its own file formats. The
.osg format is an ASCII text representation of a scene graph that you can edit in a text
editor. The .ive format, on the other hand, is a binary format, which is optimized for
fast loading.

In addition to 2D image and 3D model files, OSG plugins support I/O on archives, or
collections of related files. There are plugins for the common .tgz and .zip formats, as
well as OSG’s own .osga archive format.

OSG plugins also allow Internet-based file loading using the .net plugin.

Finally, there is a collection of plugins known as pseudoloaders, which provide additional
functionality beyond simply loading a file.

• scale, rot, and trans—These pseudoloaders load a file, but additionally place a
Transform node above the loaded scene graph root node, and configure the
Transform according to specified scale, rotation, or translation values.

• logo—The logo pseudoloader allows image files to display HUD-style over the
loaded 3D scene.

Section 2.5 File I/O provides additional information about how to use the OSG
plugins in your application.

30 An Overview of Scene Graphs and OpenSceneGraph

Interoperability
You can use OSG in any programming environment that allows linking to C++
libraries. To operate in other environments, OSG provides an interface for language-
independent runtime access.
The osgIntrospection library allows software to interact with OSG using the reflective
and introspective programming paradigms. Applications or other software use
osgIntrospection classes and methods to iterate over OSG types, enumerants, and
methods, and can call those methods without any compile- or link-time knowledge of
OSG.
Languages, such as Smalltalk and Objective-C, contain built-in support for reflection
and introspection, but these features are normally unavailable to C++ developers,
because C++ doesn’t retain the necessary metadata. To compensate for this C++
shortcoming, OSG provides a set of automatically generated wrapper libraries created
from OSG source code. Your application doesn’t need to interact with OSG wrappers
directly; they are managed entirely by osgIntrospection.
As a result of osgIntrospection and its wrappers, many languages can now interface with
OSG, including Java, TCL, Lua, and Python. For more information on language
interoperability, visit the OSG Wiki Web site [OSGWiki], Community page, and select
LanguageWrappers.

Applications and Examples
The OSG distribution includes five handy OSG utility applications, which are useful for
debugging and general OSG development activities.

• osgarchive—This application allows you to add files to an OSG .osga archive
file. It also lets you extract files and list archive contents.

• osgconv—This application converts from one file format to another. It’s
particularly useful for converting any file format to the optimized .ive file
format.

• osgdem—This application is a tool for converting elevation and image data
into paged terrain databases.

• osgversion—This application dumps the current OSG version to std::cout, as
well as some additional support code to track changes and contributors to the
OSG source.

• osgviewer—This is OSG’s flexible and powerful model viewer. Section 1.3
Running osgviewer demonstrates osgviewer use in detail.

The OSG distribution also comes with example programs that demonstrate the
capabilities of the API. The example source code illustrates many programming
concepts and techniques for OSG application development.

 OpenSceneGraph Quick Start Guide 31

2 Building a Scene
Graph

This chapter shows you how to write code that builds an OSG scene graph. It covers
both bottom-up nuts and bolts scene graph construction, as well as OSG’s mechanism
for loading entire scene graphs from 3D model files.

The first topic is memory management. Scene graphs and their data typically consume
large amounts of memory, and this section discusses OSG’s system for managing that
memory to avoid dangling pointers and memory leaks.

The simplest scene graph consists of a single leaf node with some geometry and state.
Section 2.2 Geodes and Geometry describes geometry, normal, and color
specification. Following that, you’ll learn how to control the appearance of geometry by
specifying OSG state attributes and modes.

Real applications require more complex scene graphs than a single node, however. This
chapter also covers OSG’s family of group nodes, which provide the broad feature set
found in most scene graph libraries.

Most applications need to read geometric data from 3D model files. This chapter
describes OSG’s simple file loading interface, which provides support for many
common 3D file formats.

Finally, the chapter concludes by showing you how to add text to your application.
OSG encapsulates a large amount of advanced functionality in NodeKits. This chapter
looks in detail at one NodeKit, osgText.

2.1 Memory Management
Before you start building a scene graph, you need to understand how OSG manages
memory occupied by scene graph nodes and data. A firm grasp of this concept makes it
easy for you to write clean code that avoids memory leaks and dangling pointers.

The previous chapter shows diagrams of some fairly simple scene graphs, which are
headed by a root node. In a fairly typical usage scenario, the application keeps a pointer
to the root node, but not to other nodes in the scene graph. The root node, directly or

32 Building a Scene Graph

indirectly, references all nodes in the scene graph. Figure 2-1 illustrates this typical
scenario.

When your application finishes using this scene graph, the memory occupied by each
node must be deleted to avoid memory leaks. Writing code to traverse the entire scene
graph and delete each node (and its data) along the way would be tedious and error
prone.

Fortunately, OSG provides an automated garbage collection system that uses reference-
counted memory. All OSG scene graph nodes are reference counted, and when their
reference count decrements to zero, the object deletes itself. As a result, to delete the
scene graph Figure 2-1 illustrates, your application simply deletes the pointer to the root
node. This causes a cascading effect that deletes all the nodes and data in the scene
graph, as Figure 2-2 shows.

There are two components to this garbage collection system:

• OSG node and scene graph data classes all derive from a common base,
osg::Referenced, which contains an integer reference count and methods for
incrementing and decrementing it.

Figure 2-1
Referencing a scene graph
Typically, an application references a scene graph with a single pointer storing the
address of the root node. The application doesn’t keep pointers to other nodes in the
scene graph. All other nodes are referenced, directly or indirectly, from the root node.

 OpenSceneGraph Quick Start Guide 33

• OSG defines a smart pointer template class called osg::ref_ptr<> that you use
like a normal C++ pointer. Use ref_ptr<> variables to store OSG node and
scene graph data addresses allocated on the heap. When code assigns a
Referenced object address to a ref_ptr<> variable, the reference count in
Referenced automatically increments.

Any code that stores a pointer to an object derived from Referenced must store that
pointer in a ref_ptr<> rather than a regular C++ pointer variable. If all code adheres to
this rule, then memory automatically deletes itself when the last ref_ptr<> referencing
it goes away.

The ref_ptr<> uses operator overloading, so that ref_ptr<> variables behave similarly
to normal C++ pointer variables. For example, ref_ptr<> overloads operator->() and
operator*() for dereferencing the pointer address.

When you create any scene graph node or data that derives from Referenced, your
application code can’t explicitly delete that memory. With very few exceptions, all
Referenced subclasses have protected destructors. This ensures that objects derived
from Referenced can only be deleted as a result of decrementing their reference count
to zero.

The following text describes both Referenced and ref_ptr<> in detail and shows some
example code.

Figure 2-2
Cascading scene graph deletion
OSG’s memory management system deletes the entire scene graph when the last
pointer to the root node is deleted.

Warning

Never use a regular C++ pointer variable for long-term storage of pointers
to objects derived from Referenced. As an exception, you can use a
regular C++ pointer variable temporarily, as long as the heap memory
address is eventually stored in a ref_ptr<>. However, using a ref_ptr<>
is always the safest approach.

34 Building a Scene Graph

2.1.1 The Referenced Class
Referenced (namespace: osg) implements a reference counted block of memory. All
OSG nodes and scene graph data, including state information and arrays of vertices,
normals, and texture coordinates, derive from Referenced. As a result, all OSG scene
graph memory is reference counted.

There are three main components to the Referenced class:

• It contains a protected integer reference count member variable, _refCount,
which is initialized to 0 in the class constructor.

• It contains public methods ref() and unref(), which increment and decrement
_refCount. unref() deletes the memory the object uses when _refCount reaches
zero.

• The class destructor is protected and virtual. Creation on the stack and explicit
deletion aren’t possible because the destructor is protected, and the virtual
declaration allows subclass destructors to execute.

As a general rule, your code should never need to call the ref() and unref() methods
directly. Instead, allow ref_ptr<> to handle this.

2.1.2 The ref_ptr<> Template Class
ref_ptr<> (namespace: osg) implements a smart pointer to an object of type
Referenced, and manages its reference count. The Referenced object is guaranteed to
delete itself when the last ref_ptr<> referencing it goes away. ref_ptr<> eases deletion
of scene graph memory, and ensures object deletion during an exception call stack
unwind.

There are four main components to the ref_ptr<> template class:

• It contains a private pointer, _ptr, to store the managed memory address. The
get() method returns the value of _ptr.

• It contains several methods that allow your code to use ref_ptr<> as a normal
C++ pointer, such as operator->() and operator=().

• The valid() method returns true if the ref_ptr<> is non-NULL.

When code assigns an address to a ref_ptr<> variable, the ref_ptr<> assignment
operator, operator=(), assumes the address points to an object derived from
Referenced, and automatically increments the reference count by calling
Referenced::ref().

There are two situations when a ref_ptr<> variable decrements the reference count,
during ref_ptr<> deletion (in the class destructor) and during reassignment (in

 OpenSceneGraph Quick Start Guide 35

operator=()). In both cases, ref_ptr<> decrements the reference count by calling
Referenced::unref().

2.1.3 Memory Management Examples
The following examples make use of OSG’s osg::Geode and osg::Group classes.
Geode is the OSG leaf node, which contains geometry for rendering; see 2.2 Geodes
and Geometry for more information. Group is a node with multiple children; see 2.3
Group Nodes for more information. Both classes derive from Referenced.

This first example shows how to declare a ref_ptr<> variable, assign it a value, and
verify that the ref_ptr<> variable is valid.

#include <osg/Geode>
#include <osg::ref_ptr>
...
osg::ref_ptr<osg::Geode> geode = new osg::Geode;
if (!geode.valid())
 // ref_ptr<> is invalid. Throw exception or display error.

As with any template, include the type between angle brackets in the variable
declaration. The example above creates a ref_ptr<> variable that stores the address of
an osg::Geode. Note that you assign the address as if the variable were a normal C++
pointer variable.

In a typical usage scenario, you create a node and add it as a child to another node in a
scene graph:

#include <osg/Geode>
#include <osg/Group>
#include <osg/ref_ptr>
...
{
 // Create a new osg::Geode object. The assignment to the
 // ref_ptr<> increments the reference count to 1.
 osg::ref_ptr<Geode> geode = new osg::Geode;

 // Assume ‘grp’ is a pointer to an osg::Group node. Group
 // uses a ref_ptr<> to point to its children, so addChild()
 // again increments the reference count to 2.
 grp->addChild(geode.get());
} // The ‘geode’ ref_ptr<> variable goes out of scope here. This
 // decrements the reference count back to 1.

A ref_ptr<> really isn’t required in this case, because your code doesn’t keep the geode
pointer long term. In fact, in the simple case shown above, a ref_ptr<> just adds
unnecessary overhead to the creation process. A simple C++ pointer suffices here,

36 Building a Scene Graph

because the osg::Group parent node’s internal ref_ptr<> manages the memory
occupied by the new osg::Geode.

// Create a new osg::Geode object. Don’t increment its reference
// count.
osg::Geode* geode = new osg::Geode;

// The internal ref_ptr<> in Group increments the child Geode
// reference count to 1.
grp->addChild(geode);

Use caution when using regular C++ pointers for Referenced objects. For OSG’s
memory management system to work correctly, the address of the Referenced object
must be assigned to a ref_ptr<> variable. In the code above, that assignment happens
in the osg::Group::addChild() method. If the Referenced object is never assigned to
a ref_ptr<> variable, its memory leaks.

{
 osg::Geode* geode = new osg::Geode;
} // Don’t do this! Memory leak!

As stated previously, you can’t explicitly delete an object derived from Referenced or
create one on the stack. The following code generates compile errors:

osg::Geode* geode1 = new osg::Geode;
delete geode1; // Compile error: destructor is protected.

{
 osg::Geode geode2;
} // Compile error: destructor is protected.

Variables of type ref_ptr<> can point only to objects derived from Referenced (or
objects that support the same interface as Referenced).

// OK, because Geode derives from Referenced:
osg::ref_ptr<Geode> geode = new osg::Geode;

int i;
osg::ref_ptr<int> rpi = &i; // NOT okay! ‘int’ isn’t derived
 // from Referenced and doesn’t support the Referenced
 // interface.

As discussed earlier in this chapter, OSG’s memory management feature facilitates
cascading deletion of entire scene graph trees. When the sole ref_ptr<> to the root
node is deleted, the root node reference count drops to zero, and the root node
destructor deletes both the root node and the ref_ptr<> pointers to its children. The
following code doesn’t leak the child Geode memory:

 OpenSceneGraph Quick Start Guide 37

{
 // ‘top’ increments the Group count to 1.
 osg::ref_ptr<Group> top = new osg::Group;
 // addChild() increments the Geode count to 1.
 top->addChild(new osg::Geode);
} // The ‘top’ ref_ptr goes out of scope, deleting both the Group
 // and Geode memory.

Be careful when returning the address of a object from a function. If you do this
incorrectly, the ref_ptr<> storing the memory address could go out of scope before the
address is placed on the return stack.

// DON’T do this. It stores the address as the return value on
// the call stack, but when the grp ref_ptr<> goes out of
// scope, the reference count goes to zero and the memory is
// deleted. The calling function is left with a dangling
// pointer.
osg::Group* createGroup()
{
 // Allocate a new Group node.
 osg::ref_ptr<osg::Group> grp = new osg::Group;

 // Return the new Group’s address.
 return *grp;
}

There are multiple solutions to the dilemma of how to return a Referenced object
address. The method employed in this book’s example code is to return a ref_ptr<>
storing the address, as the code below illustrates.

osg::ref_ptr<osg::Group> createGroup()
{
 osg::ref_ptr<osg::Group> grp = new osg::Group;

 // Return the new Group’s address. This stores the Group
 // address in a ref_ptr<> and places the ref_ptr<> on the
 // call stack as the return value.
 return grp.get();
}

In summary:

• Assigning an object derived from Referenced to a ref_ptr<> variable
automatically calls Referenced::ref() to increment the reference count.

• If a ref_ptr<> variable is made to point to something else or is deleted, it calls
Referenced::unref() to decrement the reference count. If the count reaches
zero, unref() deletes the memory occupied by the object.

38 Building a Scene Graph

• When allocating an object of type Referenced, always ensure it is assigned to
a ref_ptr<> to allow OSG’s memory management to operate correctly.

This may seem a little long-winded for a “Quick Start Guide”. The concept is
important, however, and a firm grasp of OSG memory management is important for
any OSG developer.

The sections that follow describe several classes derived from Referenced, and the
code snippets make extensive use of ref_ptr<> variables. As you read this chapter, keep
in mind that OSG uses ref_ptr<> internally for any long-term pointer storage, as in the
calls to osg::Group::addChild() in the previous examples.

2.2 Geodes and Geometry
The previous section introduced the concept of OSG memory management. If you’re
new to reference counted memory, you should look at a real OSG example to increase
your understanding. This section presents a simple OSG example program that uses the
memory management techniques described previously, and introduces you to building a
scene graph with OSG’s geometry-related classes. The code might appear overwhelming
at first glance, because you’re not familiar with many of the classes. A full explanation of
the geometry classes follows the code listing.

Listing 2-1 makes extensive use of the ref_ptr<> template class described in the
previous section. All the memory allocated in Listing 2-1 is reference counted. The
createSceneGraph() function even returns a ref_ptr<> to the created scene graph.
(Strictly speaking, the code in Listing 2-1 could be written completely with regular C++
pointers, as long as the calling code stores the return address in a ref_ptr<>. However,
it’s good practice to use ref_ptr<> in your application, because it automates memory
deletion in the event of an exception or shortcut return. This book and its example code
use ref_ptr<> throughout to encourage this good practice.)

Listing 2-1
Building a simple scene graph
This is a listing of the Simple example from the book’s accompanying example code.
The function createSceneGraph() specifies the geometry for a single quadrilateral
primitive. The quad has a different color at each vertex, but has the same normal for
the entire primitive.

#include <osg/Geode>
#include <osg/Geometry>

osg::ref_ptr<osg::Node>
createSceneGraph()
{
 // Create an object to store geometry in.
 osg::ref_ptr<osg::Geometry> geom = new osg::Geometry;

 OpenSceneGraph Quick Start Guide 39

 // Create an array of four vertices.
 osg::ref_ptr<osg::Vec3Array> v = new osg::Vec3Array;
 geom->setVertexArray(v.get());
 v->push_back(osg::Vec3(-1.f, 0.f, -1.f));
 v->push_back(osg::Vec3(1.f, 0.f, -1.f));
 v->push_back(osg::Vec3(1.f, 0.f, 1.f));
 v->push_back(osg::Vec3(-1.f, 0.f, 1.f));

 // Create an array of four colors.
 osg::ref_ptr<osg::Vec4Array> c = new osg::Vec4Array;
 geom->setColorArray(c.get());
 geom->setColorBinding(osg::Geometry::BIND_PER_VERTEX);
 c->push_back(osg::Vec4(1.f, 0.f, 0.f, 1.f));
 c->push_back(osg::Vec4(0.f, 1.f, 0.f, 1.f));
 c->push_back(osg::Vec4(0.f, 0.f, 1.f, 1.f));
 c->push_back(osg::Vec4(1.f, 1.f, 1.f, 1.f));

 // Create an array for the single normal.
 osg::ref_ptr<osg::Vec3Array> n = new osg::Vec3Array;
 geom->setNormalArray(n.get());
 geom->setNormalBinding(osg::Geometry::BIND_OVERALL);
 n->push_back(osg::Vec3(0.f, -1.f, 0.f));

 // Draw a four-vertex quad from the stored data.
 geom->addPrimitiveSet(
 new osg::DrawArrays(osg::PrimitiveSet::QUADS, 0, 4));

 // Add the Geometry (Drawable) to a Geode and
 // return the Geode.
 osg::ref_ptr<osg::Geode> geode = new osg::Geode;
 geode->addDrawable(geom.get());
 return geode.get();
}

The code in Listing 2-1 creates a scene graph with a single node. Figure 2-3 shows a
diagram of this extremely simple scene graph. This single-node scene graph has
educational value for new developers. Real scene graphs are much more complex.

Note that the Listing 2-1 code specifies four vertices in the y=0 plane. Like OpenGL,
OSG places no restrictions on the coordinate system that an application uses. However,

Figure 2-3
The Listing 2-1 scene graph
Listing 2-1 creates a scene graph consisting of a single Geode.

40 Building a Scene Graph

by default, the osgViewer library uses a world coordinate system that is oriented with
positive x to the right, positive z up, and positive y into the screen. This works well for
many vis-sim applications with terrain modeled in the xy plane. Chapter 3, Using
OpenSceneGraph in Your Application, describes how to change the default world
coordinate system. The Listing 2-1 code uses the default orientation to render a
quadrilateral that faces the viewer.

In addition to creating a scene graph, as Listing 2-1 shows, you’ll also want to render it
to create an image or animation. The examples in this chapter use the osgviewer
application to view the scene graph, because writing viewer code for your application
isn’t covered until Chapter 3, Using OpenSceneGraph in Your Application. To
view a scene graph in osgviewer, you need to write it to disk. Listing 2-2 shows code
that calls the function in Listing 2-1, and writes the scene graph to disk as an .osg file.
After the scene graph exists as a file on disk, you can use osgviewer to see what it looks
like.

Listing 2-2
Writing a scene graph to disk
This listing shows the main() entry point for the Simple example program. main() calls
createSceneGraph() in Listing 2-1 to create a scene graph, then writes the scene
graph to disk as a file named “Simple.osg”.

#include <osg/ref_ptr>
#include <osgDB/Registry>
#include <osgDB/WriteFile>
#include <osg/Notify>
#include <iostream>

using std::endl;

osg::ref_ptr<osg::Node> createSceneGraph();

int
main(int, char**)
{
 osg::ref_ptr<osg::Node> root = createSceneGraph();
 if (!root.valid())
 osg::notify(osg::FATAL) <<
 "Failed in createSceneGraph()." << endl;

 bool result = osgDB::writeNodeFile(
 *(root.get()), "Simple.osg");

 if (!result)
 osg::notify(osg::FATAL) <<
 "Failed in osgDB::writeNodeFile()." << endl;
}

 OpenSceneGraph Quick Start Guide 41

After calling the function in Listing 2-1 to create the scene graph, the code in Listing 2-2
writes it to disk as a file called “Simple.osg”. The .osg file format is OSG’s proprietary
ASCII-text based file format. As an ASCII file, .osg files are slow to load and rather
large, so the format is rarely used in production code. However, it’s extremely useful for
debugging during development and quick demos.

The code in Listing 2-1 and 2-2 is from the Simple example in the accompanying source
code. If you haven’t already done so, obtain the example source code from the book’s
Web site and compile and run Simple. After running the example, you’ll find the output
file, Simple.osg, in your working directory. To see what this scene graph looks like, use
osgviewer:

osgviewer Simple.osg

osgviewer should display an image similar to Figure 2-4. Chapter 1 describes osgviewer
and its user interface. For example, you can spin the rendered geometry with the left
mouse and zoom in or out with the right mouse.

The code in Listing 2-1 makes extensive use of OSG’s geometry-related classes. The
following text provides a high-level explanation of how to use these classes.

Figure 2-4
The simple example scene graph displayed in osgviewer
This figure shows the quadrilateral primitive created in Listing 2-1, after being written
out as an .osg file by the code in Listing 2-2 and displayed in osgviewer.

42 Building a Scene Graph

2.2.1 An Overview of Geometry Classes
The code in Listing 2-1 might look confusing, but in essence it performs only three
operations.

1. It creates arrays of vertex, normal, and color data.

2. It instantiates an osg::Geometry object and adds the arrays to it. It also adds
an osg::DrawArrays object to specify how to draw the data.

3. It instantiates an osg::Geode scene graph node and adds the Geometry object
to it.

This section examines each of these steps in detail.

Vector and Array Classes
OSG defines a rich set of classes for storing vector data such as vertices, normals,
colors, and texture coordinates. osg::Vec3 is an array of three floating point numbers;
use it for vector and normal data. Use osg::Vec4 for color data and osg::Vec2 for 2D
texture coordinates. In addition to simple vector storage, these classes provide a
complete set of methods for calculating length, dot and cross products, vector addition,
and vector-matrix multiplication.

OSG defines a template array class for storing objects. The most common use of the
array template is for storing vector data. In fact, this use is so common, that OSG
provides type definitions for arrays of vector data—osg::Vec2Array, osg::Vec3Array,
and osg::Vec4Array.

Listing 2-1 creates individual three-element vectors for each xyz vertex using Vec3, then
pushes each Vec3 onto the back of a Vec3Array. The code uses Vec3Array in an
almost identical fashion to store xyz normal data. Listing 2-1 uses Vec4 and Vec4Array
for color data, because colors have four elements (red, green, blue, and alpha). Later,
this chapter presents example code that uses Vec2 and Vec2Array to store two-element
texture coordinates.

The array types derive from std::vector, so they support the push_back() method to
add new elements, as Listing 2-1 shows. As a subclass of std::vector, the array classes
also support the resize() and operator[]() methods. Here’s an example that creates a
vertex data array using resize() and operator[]().

osg::ref_ptr<osg::Vec3Array> v = new osg::Vec3Array;
geom->setVertexArray(v.get());
v->resize(4);
(*v)[0] = osg::Vec3(-1.f, 0.f, -1.f);
(*v)[1] = osg::Vec3(1.f, 0.f, -1.f);
(*v)[2] = osg::Vec3(1.f, 0.f, 1.f);
(*v)[3] = osg::Vec3(-1.f, 0.f, 1.f);

 OpenSceneGraph Quick Start Guide 43

Drawables
OSG defines a class, osg::Drawable, to store data for rendering. Drawable is a virtual
base class that isn’t instantiated directly. Core OSG derives three subclasses from
Drawable.

• osg::DrawPixels—DrawPixels is a wrapper around the glDrawPixels()
command.

• osg::ShapeDrawable—ShapeDrawable provides access to several
predefined shapes, such as cylinders and spheres.

• osg::Geometry—Geometry is a flexible class for general purpose geometry
storage and rendering. The example code uses Geometry, which is the most
commonly used subclass.

If you’re already familiar with vertex arrays in OpenGL, the Geometry class will be easy
for you to use. Geometry provides an interface that lets your application specify arrays
of vertex data and how to interpret and render that data. This is analogous to the
OpenGL entry points for specifying vertex array data (such as glVertexPointer() and
glNormalPointer()) and vertex array rendering (such as glDrawArrays() and
glDrawElements()). The code in Listing 2-1 uses the following Geometry methods:

• setVertexArray(), setColorArray(), and setNormalArray()—These methods
are analogous to glVertexPointer(), glColorPointer(), and
glNormalPointer() in OpenGL. Your application uses these methods to
specify arrays of vertex, color, and normal data. setVertexArray() and
setNormalArray() each take a pointer to a Vec3Array as a parameter, and
setColorArray() takes a pointer to a Vec4Array.

• setColorBinding() and setNormalBinding()—These methods tell
Geometry how to apply the color and normal data. They take an enumerant
defined in the Geometry class as a parameter. Listing 2-1 sets the color
binding to osg::Geometry::BIND_PER_VERTEX to assign a different color to
each vertex. However, the code sets the normal binding to
osg::Geometry::BIND_OVERALL to apply the single normal to the entire
Geometry.

• addPrimitiveSet()—This method tells Geometry how to render its data. It
takes a pointer to an osg::PrimitiveSet as a parameter. PrimitiveSet is a
virtual base class that you don’t instantiate directly. Your code can add
multiple PrimtiveSet objects to the same Geometry.

The addPrimitiveSet() method allows your application to specify how OSG should
draw the geometric data stored in the Geometry object. Listing 2-1 specifies an
osg::DrawArrays object. DrawArrays derives from PrimitiveSet. Think of it as a
wrapper around the glDrawArrays() vertex array drawing command. The other
PrimitiveSet subclasses (DrawElementsUByte, DrawElementsUShort, and

44 Building a Scene Graph

DrawElementsUInt) emulate OpenGL’s glDrawElements() entry point. OSG also
provides the DrawArrayLengths class, which has no equivalent in OpenGL.
Functionally, it’s similar to repeated calls to glDrawArrays() with different index ranges
and lengths.

The most commonly used DrawArrays constructor has the following declaration:

osg::DrawArrays::DrawArrays(
 GLenum mode, GLint first, GLsizei count);

mode is one of the ten OpenGL primitive types, such as GL_POINTS, GL_LINES, or
GL_TRIANGLE_STRIP. The PrimitiveSet base class defines equivalent enumerants,
such as osg::PrimitiveSet::POINTS, and your code can use either.

first is the index of the first element in the vertex data array that OSG should use when
rendering, and count is the total number of elements that OSG should use. For example,
if your vertex data contains 6 vertices, and you want to render a triangle strip from
those vertices, you might add the following DrawArrays primitive set to your
Geometry:

geom->addPrimitiveSet(new osg::DrawArrays(
 osg::PrimitiveSet::TRIANGLE_STRIP, 0, 6)`;

After adding vertex data, color data, normal data, and a DrawArrays primitive set to the
Geometry object, the code in Listing 2-1 performs one final operation with the
Geometry. It attaches it to a node in the scene graph. The next section describes this
operation.

How OSG Draws

While the PrimitiveSet subclasses provide near-equivalent functionality
to OpenGL’s vertex array features, don’t assume that PrimitiveSet
always uses vertex arrays under the hood. Depending on rendering
circumstances, OSG might use vertex arrays (with and without buffer
objects), display lists, or even glBegin()/glEnd() to render your geometry.

Objects derived from Drawable (such as Geometry) use display lists by
default. You can modify this behavior by calling
osg::Drawable::setUseDisplayList(false).

OSG resorts to using glBegin()/glEnd() if you specify the
BIND_PER_PRIMITIVE attribute binding, which sets an attribute for each
primitive (for example, for each triangle in a GL_TRIANGLES.)

 OpenSceneGraph Quick Start Guide 45

Geodes
The osg::Geode class is the OSG leaf node that stores geometry for rendering. Listing
2-1 creates the simplest scene graph possible—a scene graph consisting of a single leaf
node. At the end of Listing 2-1, the createSceneGraph() function returns the address of
its Geode as a ref_ptr<> to an osg::Node. This is legal C++ code, because Geode
derives from Node. (By definition, all OSG scene graph nodes derive from Node.)

osg::Geode has no children, because it’s a leaf node, but it can contain geometry. The
name Geode is short for “geometry node”—a node that contains geometry. Any
geometry that your application renders must be attached to a Geode. Geode provides
the addDrawable() method to allow your application to attach geometry.

Geode::addDrawable() takes a pointer to a Drawable as a parameter. As described in
the previous section, Drawable is a virtual base class with many subclasses such as
Geometry. Look at Listing 2-1 to see an example of adding a Geometry object to a
Geode using addDrawable(). The code performs this operation at the end of the
createSceneGraph() function just before returning the Geode.

2.3 Group Nodes
OSG’s group node, osg::Group, allows your application to add any number of child
nodes, which in turn can also be Group nodes with their own children, as Figure 2-5
shows. Group is the base class for many useful nodes, including osg::Transform,
osg::LOD, and osg::Switch, which this section describes.

Group ultimately derives from Referenced. In a typical scenario, the only code
referencing a given Group is its parent, so if the root node of the scene graph is deleted,
a cascading deletion ensures there are no memory leaks.

Group is really the heart of OSG, because it allows your application to organize data in
the scene graph. The Group object’s strength comes from its interface for managing
child nodes. Group also has an interface for managing parents, which it inherits from its
base class, osg::Node. This section provides an overview of both the child and parent
interfaces.

Following a description of the child and parent interfaces, this section describes three
frequently used classes derived from Group—the Transform, LOD, and Switch
nodes.

2.3.1 The Child Interface
The Group class defines the interface for having children, and all nodes that derive
from Group inherit this interface. Most OSG nodes you use derive from Group (with
Geode being an exception), so, in general, you can assume that most nodes support the
child interface.

46 Building a Scene Graph

Group stores pointers to its children in a std::vector< ref_ptr<Node> >—an array of
ref_ptr<> variables to Node. You can access a child by index, because Group uses an
array. Group uses ref_ptr<> to allow OSG’s memory management system to work.

The following code snippet shows part of the declaration for the Group object’s child
interface. All classes are in the osg namespace.

class Group : public Node {
public:
 ...
 // Add a child node.
 bool addChild(Node* child);

 // Remove a child node. If the node isn’t a child, do nothing
 // and return false.
 bool removeChild(Node* child);

 // Replace a child node with a new child node.
 bool replaceChild(Node* origChild, Node* newChild);

 // Return the number of children.
 unsigned int getNumChildren() const;

Figure 2-5
The Group node
Shown in green, the Group node can have multiple children, which in turn can also
be Group nodes with their own children.

 OpenSceneGraph Quick Start Guide 47

 // Return true if the specified node is a child node.
 bool containsNode(const Node* node) const;
 ...
};

A very simple scene graph might consist of a Group parent node with two Geode
children. You can construct such a scene graph with the following code.

osg::ref_ptr<osg::Group> group = new osg::Group;

osg::ref_ptr<osg::Geode> geode0 = new osg::Geode;
group->addChild(Geode0.get());

osg::ref_ptr<osg::Geode> geode1 = new osg::Geode;
group->addChild(Geode1.get());

Note that Group uses a ref_ptr<> to point to its children. In this example, group
references the memory in geode0 and geode1. That memory remains allocated after geode0
and geode1 go out of scope, and is freed only after group is deleted.

2.3.2 The Parent Interface
Group inherits an interface for managing parents from Node. Geode has the same
interface, because it also derives from Node. OSG allows nodes to have multiple
parents. The following code snippet shows part of the declaration for the Node object’s
parent interface. All classes are in the osg namespace.

class Node : public Object {
public:
 ...
 typedef std::vector<Group*> ParentList;

 // Return a list of all parents.
 const ParentList& getParents() const;

 // Return a pointer to the parent with the specified index.
 Group* getParent(unsigned int I);

 // Return the number of parents.
 unsigned int getNumParents() const;
 ...
};

Node derives from osg::Object. Object is a virtual base class that your application
doesn't instantiate directly. Object provides an interface for storing and retrieving a
name string and specifying whether stored data is static or dynamically modifiable, and
derives from Referenced to support OSG’s memory management system. Section 3.2
Dynamic Modification discusses the name and dynamic data interfaces in more detail.

48 Building a Scene Graph

Note that osg::Node::ParentList is a std::vector of regular C++ pointers. While a
Node has the address of its parents, the Node doesn’t need to use OSG’s memory
management system to reference its parents. When a parent is deleted, the parent
removes itself from any child node parent lists.

In the typical case where a node has a single parent (getNumParents() returns one),
obtain a pointer to that parent with a call to getParent(0).

You use the child and parent interfaces often when constructing and manipulating scene
graphs. However, classes derived from Group provide additional functionality required
by many applications. The following sections describe three.

2.3.3 Transform Nodes
OSG supports transformation of geometric data with the osg::Transform family of
node classes. Transform derives from Group, and can have multiple children.
Transform is a virtual base class that your application can’t instantiate directly. Instead,
use osg::MatrixTransform or osg::PositionAttitudeTransform, both of which
derive from Transform. These two classes provide different transformation interfaces.
Depending on your application requirements, you can use either or both.

Transform affects the OpenGL model-view matrix stack. Hierarchically arranged
Transform nodes create successively concatenated transformations in the same way

2.4.3 Example Code for Setting State shows an example of how to
render the same Geode with different transformations and different
rendering state.

When a node has multiple parents, OSG traverses the node multiple
times. Each parent keeps its own ref_ptr<> to the child, so the child isn’t
deleted until all parents have stopped referencing it.

When you add the
same node as a child
to multiple nodes, the
child node has
multiple parents, as
the diagram
illustrates. You might
want to do this to
render the same
subgraph many times
without creating
multiple copies of the
subgraph. Section

Multiple Parents

 OpenSceneGraph Quick Start Guide 49

that OpenGL matrix manipulation commands (such as glRotatef() or glScalef())
concatenate matrices onto the top of the current matrix stack.

Transform allows you to specify its reference frame. By default, the reference frame is
relative (osg::Transform::RELATIVE_RF), resulting in the concatenation behavior
described previously. However, just as OpenGL allows you to call glLoadMatrixf(),
OSG allows you to set an absolute reference frame.

osg::ref_ptr<osg::MatrixTransform> mt = new osg::MatrixTransform;
mt->setReferenceFrame(osg::Transform::ABSOLUTE_RF);

The MatrixTransform Node
MatrixTransform uses an osg::Matrix object internally (see the sidebar). To create a
MatrixTransform node that performs a translation, create a translation Matrix and
assign the Matrix to the MatrixTransform.

osg::ref_ptr<osg::MatrixTransform> mt = new osg::MatrixTransform;
osg::Matrix m;
m.setTranslate(x, y, z);
mt->setMatrix(m);

Matrix doesn’t derive from Referenced. You can create local Matrix variables on the
stack. The MatrixTransform::setMatrix() method copies the Matrix parameter onto
the MatrixTransform node’s Matrix member variable.

Matrix provides an interface for common transformations, such as translate, rotate, and
scale. You can also set the matrix explicitly:

osg::ref_ptr<osg::MatrixTransform> mt = new osg::MatrixTransform;
osg::Matrix m;

// Set all 16 values of the Matrix:
m.set(1.f, 0.f, 0.f, 0.f,
 0.f, 1.f, 0.f, 0.f,
 0.f, 0.f, 1.f, 0.f,
 10.f, 0.f, 0.f, 1.f); // translate by x=10
mt->setMatrix(m);

The State example, illustrated in Section 2.4.3 Example Code for Setting State, uses
multiple MatrixTransform nodes to render the same Geode at several different
locations, each with their own unique state settings.

The PositionAttitudeTransform Node
Use the PositionAttitudeTransform node to specify a transformation using a Vec3
position and a quaternion. OSG provides the osg::Quat class for storage of quaternion

50 Building a Scene Graph

orientation data. Quat isn’t derived from Referenced and therefore it isn’t reference
counted.

Quat provides a rich configuration interface. The following code demonstrates several
methods for creating and configuring quaternions.

// Create a quaternion rotated theta radians around axis.
float theta(M_PI * .5f);
osg::Vec3 axis(.707f, .707f, 0.f);
osg::Quat q0(theta, axis);

Matrices and osg::Matrix

The osg::Matrix class stores and allows operations on a 4×4 matrix
consisting of 16 floating point numbers. Matrix doesn’t derive from
Referenced and isn’t reference counted.

Matrix provides an interface that is somewhat backwards from the
notation the OpenGL specification and most OpenGL textbooks use.
Matrix exposes an interface consistent with two-dimensional row-major
C/C++ arrays:

osg::Matrix m;
m(0, 1) = 0.f; // Set the second element (row 0, column 1)
m(1, 2) = 0.f; // Set the seventh element (row 1, column 2)

OpenGL matrices are one-dimensional arrays, which OpenGL
documentation usually displays as column major:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

151173

141062

13951

12840

mmmm
mmmm
mmmm
mmmm

GLfloat m[16];
m[1] = 0.f; // Set the second element
m[6] = 0.f; // Set the seventh element

In spite of this apparent difference, both OSG and OpenGL matrices are
laid out in memory identically—OSG doesn’t perform a costly transpose
before submitting its matrix to OpenGL. However, as a developer,
remember to transpose an OSG matrix in your head before accessing
individual elements.

Matrix exposes a comprehensive set of operators for vector matrix

 OpenSceneGraph Quick Start Guide 51

// Create a quaternion using yaw/pitch/roll angles.
osg::Vec3 yawAxis(0.f, 0.f, 1.f);
osg::Vec3 pitchAxis(1.f, 0.f, 0.f);
osg::Vec3 rollAxis(0.f, 1.f, 0.f);
// (This example code assumes yawRad, pitchRad, and rollRad are
// defined and declared as floats externally.)
osg::Quat q1(yawRad, yawAxis, pitchRad, pitchAxis,
 rollRad, rollAxis);

To process an entire Geode with this transformation,
create a MatrixTransform node containing T, add a
child MatrixTransform node containing R, and add a
child Geode to the rotation MatrixTransform, as the
diagram shows. This is equivalent to the following
sequence of OpenGL commands:

glMatrixMode(GL_MODELVIEW);
glTranslatef(...); // Translation T
glRotatef(...); // Rotation R
...
glVertex3f(...);
glVertex3f(...);
...

multiplication and matrix concatenation. To transform a Vec3 v by a
rotation R around a new origin T, use the following code:

osg::Matrix T;
T.makeTranslate(x, y, z);
osg::Matrix R;
R.makeRotate(angle, axis);
Vec3 vPrime = v * R * T;

The premultiplication-style Matrix class operators are the opposite of
what you usually find in most OpenGL documentation:

v' = TRv

This OpenGL notation produces the same result because OpenGL’s
postmultiplication notation with column-major matrices is equivalent to
OSG’s premultiplication-style operators with row-major matrices.

In summary, while OSG exposes a row-major interface that differs from
OpenGL documentation’s column-major notation, OSG and OpenGL
perform equivalent operations internally, and their matrices are 100%
compatible.

52 Building a Scene Graph

// Concatenate the two quaternions
q0 *= q1;

// Configure a PositionAttitudeTransform by using its
// setPosition() and setAttitude() methods.
// (x, y, z, theta, and axis are externally defined
// and declared.)
osg::Vec3 pos(x, y, z);
osg::Quat att(theta, axis);
osg::ref_ptr<osg::PositionAttitudeTransform> pat =
 new osg::PositionAttitudeTransform;
pat->setPosition(pos);
pat->setAttitude(att);

You can add as many child nodes to a PositionAttitudeTransform node as your
application requires, because PositionAttitudeTransform inherits the child interface
from Group. Like MatrixTransform, the PositionAttitudeTransform node
transforms child geometry by its position and attitude.

2.3.4 The LOD Node
Use the osg::LOD node to render objects at varying levels of detail. LOD derives from
Group and therefore inherits the child interface. LOD also allows you to specify a
range for each child. The range consists of a minimum and maximum value. These
values represent distances by default, and LOD displays a child if its distance to the
viewer falls within the child’s corresponding range. LOD children can be in any order
and don’t need to be sorted by distance of amount of detail.

Figure 2-6 illustrates a LOD node with three children. The first child is a Group node
with children of its own. When the distance to the viewpoint falls within the first child’s
range, OSG traverses it and its children. The LOD node applies the same logic to its
second and third child. OSG can display none, any, or all of the LOD children, based
on their distance range.

The following code adds a Geode child with a range of 0 to 1000. The parent LOD
node displays it when the distance to the eye is less than 1000 units.

osg::ref_ptr<osg::Geode> geode;
...
osg::ref_ptr<osg::LOD> lod = new osg::LOD;
// Display geode when 0.f <= distance < 1000.f
lod->addChild(geode.get(), 0.f, 1000.f);

LOD displays multiple children simultaneously if their ranges overlap.

osg::ref_ptr<osg::Geode> geode0, geode1;
// Initializa the Geodes.
...
osg::ref_ptr<osg::LOD> lod = new osg::LOD;

 OpenSceneGraph Quick Start Guide 53

// Display geode0 when 0.f <= distance < 1050.f
lod->addChild(geode0.get(), 0.f, 1050.f);
// Display geode1 when 950.f <= distance < 2000.f
lod->addChild(geode1.get(), 950.f, 2000.f);
// Result: display geode0 and geode1 when 950.f <= distance < 1050.f

LOD computes the distance from the eye to the center of its bounding volume by
default. If this isn’t appropriate for your rendering situation, you can specify a user-
defined center. The following code configures a LOD node to use a user-defined
center.

osg::ref_ptr<osg::LOD> lod = new osg::LOD;
// Use a user-defined center for distance computation
lod->setCenterMode(osg::LOD::USER_DEFINED_CENTER);
// Specify the user-defined center x=10 y=100
Lod->setCenter(osg::Vec3(10.f, 100.f, 0.f));

To restore the distance computation to the default behavior of using the bounding
sphere center, call osg::LOD::setCenterMode(
osg::LOD::USE_BOUNDING_SPHERE_CENTER).

The minimum and maximum values represent distance by default. However, you can
configure LOD to interpret the range values as pixel sizes, and LOD displays a child if
its on-screen pixel size falls within the child’s corresponding range. To configure a
LOD node’s range mode, call osg::LOD::setRangeMode() and pass in either
osg::LOD::DISTANCE_FROM_EYE_POINT or
osg::LOD::PIXEL_SIZE_ON_SCREEN.

Figure 2-6
The LOD node
This figure shows an LOD node with three children. Each child has a distance
range. The LOD node allows rendering of its children if the distance to the
viewpoint falls within a child’s range.

54 Building a Scene Graph

2.3.5 The Switch Node
Use the osg::Switch node to selectively render or skip over specific child nodes.
Typical uses of Switch include implementing your own load-balancing scheme to
selectively draw certain children based on current rendering load or to switch between
screens or levels in a game.

Like LOD, Switch inherits the child interface from Group. Each Switch child node
has an associated Boolean value. Switch renders a child when the child’s corresponding
Boolean value is true and skips over the child when the value is false. The following
code creates a Switch node and adds two Group children, one visible and one not
visible.

osg::ref_ptr<osg::Group> group0, group1;
...
// Create a Switch parent node and add two Group children:
osg::ref_ptr<osg::Switch> switch = new osg::Switch;
// Render the first child:
switch->addChild(group0.get(), true);
// Don’t render the second child:
switch->addChild(group1.get(), false);

If your code simply adds a child without specifying a value, Switch assigns the default
value true.

// Add a child. By default, it’s visible
switch->addChild(group0.get());

You can change the default value for new children by calling
Switch::setNewChildDefaultValue().

// Change the default for new children:
switch->setNewChildDefaultValue(false);
// These new children will be turned off by default:
switch->addChild(group0.get());
switch->addChild(group1.get());

After you’ve added a child to a Switch, you can change its value. Use
Switch::setChildValue() and pass in the child and its new value.

// Add a child, initially turned on:
switch->addChild(group0.get(), true);
// Disable group0:
switch->setChildValue(group0.get(), false);

The above code snippet is extremely contrived. To experience the full potential of
enabling and disabling Switch children at runtime, you need to use an update callback
(osg::NodeCallback) or NodeVisitor (osg::NodeVisitor) to manipulate your scene

 OpenSceneGraph Quick Start Guide 55

graph node values between rendered frames. This book discusses update callbacks and
the NodeVisitor class in Chapter 3, Using OpenSceneGraph in Your Application.

2.4 Rendering State
The Simple example code in Section 2.2 Geodes and Geometry creates a scene graph
for you to examine using the osgviewer application. If you rotate the quad in osgviewer,
note that OSG illuminates the quad with a light source at the viewpoint. osgviewer
enables lighting by configuring OSG’s rendering state.

Lighting is one of many rendering state features that OSG supports. OSG supports
most of the OpenGL fixed function pipeline rendering state (such as alpha function,
blending, clip planes, color mask, face culling, fog, depth and stencil state, point and line
rasterization state, and several others). OSG rendering state also allows applications to
specify vertex and fragment shaders.

Your application sets rendering state in an osg::StateSet. You can attach a StateSet to
any node in the scene graph, and you can also attach it to a Drawable. Most OpenGL
application developers know that they need to minimize state changes and avoid setting
state redundantly; the StateSet object handles these optimizations automatically.

StateSet objects also manage the OpenGL state attribute stack as OSG traverses the
scene graph. This allows your application to set a different state in different subgraphs.
OSG effectively saves and restores the rendering state as it traverses each subgraph.

You should minimize the number of StateSet objects you attach to a scene graph.
Fewer StateSet objects consume less memory and reduce the amount of work OSG
does during scene graph traversals. To facilitate StateSet sharing, StateSet derives from
Referenced. This means that Node or Drawable objects that share the same StateSet
don’t require extra code to manage memory cleanup.

OSG organizes rendering state into two groups, attributes and modes. Attributes are the
state variables that control the rendering features. For example, fog color and blend
function are both OSG state attributes. Modes have a nearly 1-to-1 mapping with the
OpenGL state features toggled with glEnable() and glDisable(). Your application sets
modes to enable or disable functionality, such as texture mapping and lighting. In short,
modes are rendering features, and attributes are the variables that control those features.

To set a state value, your application needs to do the following:

• Obtain the StateSet for the Node or Drawable of the state you want to set.

• Call into that StateSet to set the state modes and attributes.

To obtain a StateSet from a Node or Drawable, call the following method:

osg::StateSet* state = obj->getOrCreateStateSet();

56 Building a Scene Graph

In the above code snippet, obj is either a Node or a Drawable—
getOrCreateStateSet() is defined for both classes. This method returns a pointer to
obj’s StateSet. If obj doesn’t already have a StateSet attached to it, this method creates a
new one and attaches it.

StateSet derives from Referenced. The owning Node or Drawable uses a ref_ptr<>
internally to reference the StateSet, so it’s safe for your application to use a regular
C++ pointer as long as you don’t need to reference the StateSet long term. The above
code demonstrates the typical usage, in which state is a local variable within a function
call, and the application doesn’t need a long-term reference to the StateSet.

The state variable in the above code snippet is a pointer to obj’s StateSet. After your
application obtains a pointer to a StateSet, you can set attributes and modes. The
following sections looks at both in detail, and presents a simple example.

2.4.1 Attributes and Modes
OSG defines a different class for each state attribute that your application can set. All
state attribute classes derive from osg::StateAttribute, which is a virtual base class that
your application won’t instantiate directly.

The classes that derive from StateAttribute number in the dozens. This book provides
a glimpse of a few attribute classes, and examines the lighting and texture mapping
attributes in greater detail. A comprehensive examination of all attribute classes is
outside the scope of this book. To explore on your own, examine the header files in
include/osg in your OSG development environment, and look for classes that derive
from StateAttribute.

OSG divides attributes and modes into two groups, texture and non-texture. This
section discusses setting non-texture state. Setting a texture state is covered in section
2.4.4 Texture Mapping. OSG provides a different interface to set texture attributes,
because texture attributes require a texture unit for multitexturing.

Setting an Attribute
To set an attribute, instantiate the class corresponding to the attribute you want to
modify. Set values in that class, then attach it to the StateSet using
osg::StateSet::setAttribute(). The following code snippet demonstrates how to set the
face culling attribute:

// Obtain the StateSet from the geom.
osg::StateSet* state = geom->getOrCreateStateSet();

// Create and add the CullFace attribute.
osg::CullFace* cf = new osg::CullFace(
 osg::CullFace::BACK);
state->setAttribute(cf);

 OpenSceneGraph Quick Start Guide 57

In the above code snippet, geom is a Geometry object (though it could be any other
object derived from Drawable or Node). After obtaining a pointer to geom’s StateSet,
the code creates a new osg::CullFace object, then attaches it to state.

CullFace is an attribute, and therefore derives from StateAttribute. Its constructor
takes a single parameter—an enumerant that specifies whether front or back faces are to
be culled, FRONT, BACK, or FRONT_AND_BACK. These enumerants are defined in the
CullFace header, and are equivalent to OpenGL’s GL_FRONT, GL_BACK, and
GL_FRONT_AND_BACK enumerants.

If you’re familiar with OpenGL, think of the above code as calling
glCullFace(GL_BACK). However, keep in mind that OSG is a scene graph. When your
application attaches a CullFace attribute to a StateSet, you’re storing a desired state,
and not issuing a command to OpenGL. During the draw traversal, OSG tracks
changes to state and only issues the glCullFace() command when it’s required.

Like most objects in OSG, StateAttribute derives from Referenced. After you
instantiate any object that derives from StateAttribute and attach it to a StateSet, the
StateSet references the attribute. You don’t have to worry about deleting that memory
later. In the typical use case shown above, you reference the StateAttribute temporarily
using a regular C++ pointer. After you’ve attached the StateAttribute to a StateSet,
StateSet manages the memory with a ref_ptr<>.

Setting a Mode
To enable or disable a mode, call osg::StateSet::setMode(). For example, the following
code snippet enables fog:

// Obtain the StateSet.
osg::StateSet* state = geom->getOrCreateStateSet();

// Enable fog in this StateSet.
state->setMode(GL_FOG, osg::StateAttribute::ON);

The first parameter to setMode() is any GLenum that is valid in a call to glEnable()
or glDisable(). The second parameter can be osg::StateAttribute::ON or
osg::StateAttribute::OFF. (Actually, this is a bit mask, as 2.4.2 State Inheritance
covers.)

Setting an Attribute and a Mode
OSG provides a convenient interface to set both an attribute and a mode with a single
function call. In many cases, an obvious correspondence exists between attributes and
modes. For example, the CullFace attribute’s corresponding mode is GL_CULL_FACE.
To attach an attribute to a StateSet and simultaneously enable its corresponding mode,
use the osg::StateSet::setAttributeAndModes() method. The following code snippet
attaches the blending function and enables blending:

58 Building a Scene Graph

// Create the BlendFunc attribute.
osg::BlendFunc* bf = new osg::BlendFunc();
// Attach the BlendFunc attribute and enable blending.
state->setAttributeAndModes(bf);

setAttributeAndModes() has a second parameter that enables or disables the first
parameter attribute’s corresponding mode. The second parameter defaults to ON. This
allows your application to specify an attribute and conveniently enable its corresponding
mode with a single function call.

2.4.2 State Inheritance
When you set state on a node, that state applies to the current node and its children.
However, if a child node sets the same state to a different value, the child state value
overrides the parent state. In other words, the default behavior is to inherit state from
parent nodes unless a child node changes it. Figure 2-7 illustrates this concept.

The default behavior of inheritance is useful in many cases. However, some rendering
situations require different behavior. Imagine a scene graph with nodes that specify a
filled polygon mode. To render this scene graph in wireframe, your application must
override the polygon mode state regardless of where it occurs in the scene graph.

OSG allows you to change the state inheritance behavior individually for each attribute
and mode at any point in the scene graph. The following enumerants are available:

• osg::StateAttribute::OVERRIDE—If you set an attribute or mode to
OVERRIDE, all children inherit this attribute or mode regardless of whether
they change that state or not.

• osg::StateAttribute::PROTECTED—However, there is an exception to
OVERRIDE. You can cause an attribute or mode to be immune from
overriding by setting it to PROTECTED.

Figure 2-7
State inheritance
In this scene graph, the root node enables lighting. Its first child disables lighting,
which overrides the lighting state from its parent. OSG renders the first child with
lighting disabled. The second child doesn’t change state. As a result, OSG renders
the second child using its parent’s state, with lighting enabled.

 OpenSceneGraph Quick Start Guide 59

• osg::StateAttribute::INHERIT—This mode forces the child state to
inherit from its parent. In effect, it removes the state from the child, and
instead uses the parent state.

You can specify these values by bitwise ORing them into the second parameter of the
setAttribute(), setMode(), and setAttributeAndModes() methods. The following
code snippet forces wireframe rendering on a scene graph:

// Obtain the root node’s StateSet.
osg::StateSet* state = root->getOrCreateStateSet();

// Create a PolygonMode attribute
osg::PolygonMode* pm = new osg::PolygonMode(
 osg::PolygonMode::FRONT_AND_BACK, osg::PolygonMode::LINE);
// Force wireframe rendering.
state->setAttributeAndModes(pm,
 osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE);

Use PROTECTED to ensure that a parent state never overrides a child state. For example,
you might create a scene containing lights that use luminance lighting for the light
source geometry. If a parent node disables lighting, the light geometry would render
incorrectly. In this case, use PROTECTED on the light geometry state set for
GL_LIGHTING to ensure it remains enabled.

2.4.3 Example Code for Setting State
Section 2.3.2 The Parent Interface describes adding the same node as a child to
multiple parents. The section, The MatrixTransform Node, describes the
MatrixTransform node for transforming geometry. Section 2.4 Rendering State
describes OSG state. The following example code combines all three concepts.

This section presents a simple example of how to modify OSG’s rendering state. The
code creates a Geode with a Drawable that contains two quadrilaterals, but parents it
to four MatrixTransform nodes, each with their own StateSet. Figure 2-8 shows this
scene graph, and Listing 2-3 presents the code for creating it. The code is from the State
example in the book’s source code.

Listing 2-3
State modifications
This portion of the State example adds several Drawable objects to a single Geode.
The code sets different state for each Drawable, and disables lighting for all
geometry by disabling it in the Geode object’s StateSet.

#include <osg/Geode>
#include <osg/Group>
#include <osg/MatrixTransform>
#include <osg/Geode>

60 Building a Scene Graph

#include <osg/Geometry>
#include <osg/StateSet>
#include <osg/StateAttribute>
#include <osg/ShadeModel>
#include <osg/CullFace>
#include <osg/PolygonMode>
#include <osg/LineWidth>

...

osg::ref_ptr<osg::Node>
createSceneGraph()
{
 // Create the root node Group.
 osg::ref_ptr<osg::Group> root = new osg::Group;
 {
 // Disable lighting in the root node's StateSet. Make
 // it PROTECTED to prevent osgviewer from enabling it.
 osg::StateSet* state = root->getOrCreateStateSet();
 state->setMode(GL_LIGHTING,
 osg::StateAttribute::OFF |
 osg::StateAttribute::PROTECTED);
 }

 // Create the leaf node Geode and attach the Drawable.
 osg::ref_ptr<osg::Geode> geode = new osg::Geode;
 geode->addDrawable(createDrawable().get());

 osg::Matrix m;
 {
 // Upper-left: Render the drawable with default state.
 osg::ref_ptr<osg::MatrixTransform> mt =
 new osg::MatrixTransform;
 m.makeTranslate(-2.f, 0.f, 2.f);
 mt->setMatrix(m);
 root->addChild(mt.get());
 mt->addChild(geode.get());
 }
 {
 // Upper-right Set shade model to FLAT.
 osg::ref_ptr<osg::MatrixTransform> mt =
 new osg::MatrixTransform;
 m.makeTranslate(2.f, 0.f, 2.f);
 mt->setMatrix(m);
 root->addChild(mt.get());
 mt->addChild(geode.get());

 osg::StateSet* state = mt->getOrCreateStateSet();
 osg::ShadeModel* sm = new osg::ShadeModel();
 sm->setMode(osg::ShadeModel::FLAT);

 OpenSceneGraph Quick Start Guide 61

 state->setAttribute(sm);
 }
 {
 // Lower-left: Enable back face culling.
 osg::ref_ptr<osg::MatrixTransform> mt =
 new osg::MatrixTransform;
 m.makeTranslate(-2.f, 0.f, -2.f);
 mt->setMatrix(m);
 root->addChild(mt.get());
 mt->addChild(geode.get());

 osg::StateSet* state = mt->getOrCreateStateSet();
 osg::CullFace* cf = new osg::CullFace(); // Default: BACK
 state->setAttributeAndModes(cf);
 }
 {
 // Lower-right: Set polygon mode to LINE in
 // draw3's StateSet.
 osg::ref_ptr<osg::MatrixTransform> mt =
 new osg::MatrixTransform;
 m.makeTranslate(2.f, 0.f, -2.f);
 mt->setMatrix(m);
 root->addChild(mt.get());
 mt->addChild(geode.get());

 osg::StateSet* state = mt->getOrCreateStateSet();
 osg::PolygonMode* pm = new osg::PolygonMode(
 osg::PolygonMode::FRONT_AND_BACK,
 osg::PolygonMode::LINE);
 state->setAttributeAndModes(pm);

 // Also set the line width to 3.
 osg::LineWidth* lw = new osg::LineWidth(3.f);
 state->setAttribute(lw);
 }

 return root.get();
}

The State example code creates a Group node, called root, to act as the root node of the
scene graph, and configures root’s StateSet to disable lighting. It uses the PROTECTED
flag to prevent osgviewer from enabling it.

The code uses a function called createDrawable() to create a Geometry object
containing two quadrilaterals with color per vertex. Listing 2-3 doesn’t show
createDrawable(). Download the example code to see this function. As you can imagine,
it’s similar to the code in Listing 2-1. The code attaches the returned Drawable to a
new Geode, called geode.

62 Building a Scene Graph

To render geode at four different locations, the code creates four MatrixTransform
nodes, each with a different translation, then adds geode as a child to each
MatrixTransform. To change the appearance of geode, each MatrixTransform has a
unique StateSet.

• The first MatrixTransform, which translates geode to the upper left, uses an
unmodified StateSet. geode inherits all state from its parent. In this case, it uses
default state.

• The second MatrixTransform, which translates geode to the upper right, uses a
StateSet with a ShadeModel StateAttribute set to FLAT. This causes geode’s
quadrilaterals to render with flat shading. Their colors come from the color of
the final triggering vertex.

• The third MatrixTransform, which translates geode to the lower left, uses a
StateSet with a CullFace StateAttribute. By default, CullFace culls BACK
faces, although you can change this with a constructor parameter. The call to
setAttributeAndModes(cf) attaches the CullFace and simultaneously
enables GL_CULL_FACE. (The two quadrilaterals returned by createDrawable()
have opposite vertex winding order, so one is always a back face regardless of
the viewpoint.)

• The final MatrixTransform translates geode to the lower right. Its StateSet
contains two StateAttribute objects, a PolygonMode, and a LineWidth. The
code sets the polygon mode to LINE for both FRONT_AND_BACK faces, and
sets the line width to 3.0.

Figure 2-8
Scene graph for the state example program
The State example renders the same Geode four times. It positions the Geode using
four MatrixTransform nodes, each with their own StateSet.

 OpenSceneGraph Quick Start Guide 63

Like the Simple example, the State example writes its scene graph to a file, State.osg.
After running the State example, display the output in osgviewer with the following
command:

osgviewer State.osg

Figure 2-9 shows how this file appears when loaded in osgviewer.

2.4.4 Texture Mapping
OSG fully supports OpenGL texture mapping. To perform basic texture mapping in
your application, your code must do the following:

• Specify texture coordinates with your geometry.

• Create a texture attribute object and store texture image data in it.

Figure 2-9
The State example scene graph displayed in osgviewer TBD move
This rendering of the scene graph created in Listing 2-3 demonstrates different state
attributes and modes. Upper left: default state. Upper right: shade model set to FLAT.
Lower left: face culling enabled for back faces. Lower right: polygon mode set to LINE
and line width set to 3.0. Lighting is disabled for the entire scene graph.

64 Building a Scene Graph

• Set the appropriate texture attributes and modes in a StateSet.

This section provides information on each step. In the book’s example code, the
TextureMapping example demonstrates basic texture mapping techniques. To conserve
space, that code is not reproduced in this text.

Texture Coordinates
Section 2.2 Geodes and Geometry explains the Geometry object’s interface for
setting vertex, normal, and color data. Geometry also allows your application to specify
one or more arrays of texture coordinate data. When you specify texture coordinates,
you must also specify the corresponding texture unit. OSG uses the texture unit value
for multitexture.

The code snippet that follows creates an osg::Vec2Array, stores texture coordinates in
it, and attaches it to the Geometry for use with texture unit 0. To apply multiple
textures to a single Geometry, attach multiple texture coordinate arrays to the
Geometry and assign a different texture unit to each array.

// Create a Geometry object.
osg::ref_ptr<osg::Geometry> geom = new osg::Geometry;

// Create a Vec2Array of texture coordinates for texture unit 0
// and attach it to the geom.
osg::ref_ptr<osg::Vec2Array> tc = new osg::Vec2Array;
geom->setTexCoordArray(0, tc.get());
tc->push_back(osg::Vec2(0.f, 0.f));
tc->push_back(osg::Vec2(1.f, 0.f));
tc->push_back(osg::Vec2(1.f, 1.f));
tc->push_back(osg::Vec2(0.f, 1.f));

The first parameter to osg::Geometry::setTexCoordArray() is the texture unit, and
the second parameter is the texture coordinate data array. There’s no need for an

Multitexture

OpenGL was originally released without multitexture support. After adding
multitexture, OpenGL continued to support the non-multitexture interface
for backwards compatibility. Under the hood, OpenGL interprets the non-
multitexture interface as a modification to texture unit 0.

Unlike OpenGL, OSG doesn’t provide a non-multitexture interface. As a
result, your application must specify a texture unit for texture coordinate
data and texture state. To use a single texture, simply specify texture
unit 0.

 OpenSceneGraph Quick Start Guide 65

osg::Geometry::setTexCoordBinding() entry point. Texture coordinates are always
bound per vertex.

Loading Images
Your application uses two classes for basic 2D texture mapping, osg::Texture2D and
osg::Image. Texture2D is a StateAttribute that manages the OpenGL texture object,
and Image manages image pixel data. To use a 2D image file for a texture map, use the
osgDB library to create an Image object and attach the Image to a Texture2D. The
following code snippet uses the file sun.tif as a texture map.

#include <osg/Texture2D>
#include <osg/Image>
...
osg::StateSet* state = node->getOrCreateStateSet();

// Load the texture image
osg::ref_ptr<osg::Image> image =
 osgDB::readImageFile(“sun.tif");

// Attach the image in a Texture2D object
osg::ref_ptr<osg::Texture2D> tex = new osg::Texture2D;
tex->setImage(image.get());

The osgDB method readImageFile() creates a new Image object, loads the image file,
stores it in the Image, and returns the new Image object. Section 2.5 File I/O
describes readImageFile() in greater detail.

After configuring the Texture2D attribute, attach it to a StateSet. The next section,
Texture State, describes this step in more detail.

Applications that make heavy use of texture mapping require tight control over memory
management. The Image object derives from Referenced, and Texture2D keeps a
ref_ptr<> to the Image. During the first render pass, OSG creates an OpenGL texture
object to store the image data, resulting in two copies of the texture image, one in the
Image object and the other owned by OpenGL. In a simple single-context rendering
scenario, you can reduce memory consumption by configuring the Texture2D to
release its reference to the Image. If the Texture2D is the only object referencing the
Image, this causes OSG to delete the Image and the memory it occupies. The
following code demonstrates how to configure Texture2D to release its reference to
the Image object:

// After creating the OpenGL texture object, release the
// internal ref_ptr<Image> (delete the Image).
tex->setUnRefImageDataAfterApply(true);

66 Building a Scene Graph

By default, Texture2D doesn’t release its Image reference. This is the desired behavior
in a multi-context rendering scenario if texture objects aren’t shared between the
contexts.

Texture State
The interface for setting texture state allows your application to specify state for each
texture unit. However, the texture state interface is very similar to the non-texture state
interface. To attach a texture attribute to a StateSet, use
osg::StateSet::setTextureAttribute(). The first parameter to setTextureAttribute() is
the texture unit, and the second parameter is a texture attribute derived from
StateAttribute. There are six valid texture attributes, one for each of the five texture
types (osg::Texture1D, osg::Texture2D, osg::Texture3D, osg::TextureCubeMap,
and osg::TextureRectangle) and an attribute for texture coordinate generation
(osg::TexGen).

Given a Texture2D attribute tex and a StateSet state, the following code attaches tex to
state for use on texture unit 0:

// Create a Texture2D attribute.
Osg::ref_ptr<osg::Texture2D> tex = new osg::Texture2D;
// ...

// Attach the texture attribute for texture unit 0.
state->setTextureAttribute(0, tex.get());

Similarly, to set a texture mode, use osg::StateSet::setTextureMode(). This method is
analogous to the setMode() method. You can set the following modes with
setTextureMode(): GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D,
GL_TEXTURE_CUBE_MAP, GL_TEXTURE_RECTANGLE, GL_TEXTURE_GEN_Q,
GL_TEXTURE_GEN_R, GL_TEXTURE_GEN_S, and GL_TEXTURE_GEN_T.

Like setTextureAttribute(), the first parameter to setTextureMode() is the desired
texture unit. The following code snippet disables 2D texture mapping for texture unit 1.

state->setTextureMode(1, GL_TEXTURE_2D,
 osg::StateAttribute::OFF);

Of course, use osg::StateSet::setTextureAttributesAndModes() to attach an attribute
to a StateSet and simultaneously enable its corresponding mode. If the attribute is a
TexGen object, setTextureAttributesAndModes() sets the texture coordinate
generation modes GL_TEXTURE_GEN_Q, GL_TEXTURE_GEN_R, GL_TEXTURE_GEN_S,
and GL_TEXTURE_GEN_T. The mode is implicit for other texture attributes. For
example, in the following code, setTextureAttributesAndModes() enables
GL_TEXTURE_2D, because the attribute passed as the second parameter is a Texture2D
object.

 OpenSceneGraph Quick Start Guide 67

// Create a Texture2D attribute.
osg::ref_ptr<osg::Texture2D> tex = new osg::Texture2D;
// ...

// Attach the 2D texture attribute and enable GL_TEXTURE_2D,
// both on texture unit 0.
state->setTextureAttributeAndModes(0, tex);

setTextureAttributeAndModes() has a third parameter that defaults to ON to enable
the texture mode. Like setAttributeAndModes(), you can modify the inheritance
behavior of texture attributes by bitwise ORing OVERRIDE, PROTECTED, or INHERIT
into this final parameter. You can also specify inheritance flags in the third parameters
to setTextureMode() and setTextureAttribute().

2.4.5 Lighting
OSG fully supports OpenGL lighting, including material properties, light properties,
and lighting models. Like OpenGL, light sources aren’t visible—OSG doesn’t render a
bulb or other physical manifestation. Also, light sources create shading effects, but don’t
create shadows—use the osgShadow NodeKit for that.

To use lighting in your application, your code must do the following:

• Specify normals with your geometry.

• Enable lighting and set other lighting state.

• Specify the light source properties and attach it to your scene graph.

• Specify surface material properties.

This section provides information on each step.

If your application uses the osgViewer library described in Chapter 3, Using
OpenSceneGraph in Your Application, note that osgViewer enables lighting and a
single light source. You can override this in your application by setting the
GL_LIGHTING mode or changing the parameters to GL_LIGHT0. For more information,
see the Lighting State section.

Normals
Correct lighting requires that unit length normals accompany your geometric data.
Section 2.2 Geodes and Geometry describes how to set normal arrays and bindings in
a Geometry object.

As in most 3D APIs, your normals must be unit length to obtain acceptable results.
Keep in mind that scale transformations can alter the length of your normals. If your
Geometry object’s normal array contains unit length normals, but lighting results

68 Building a Scene Graph

appear too bright or too dim, a scale transformation could be the culprit. The most
efficient solution is to enable normal rescaling in the StateSet.

osg::StateSet* state = geode->getOrCreateStateSet();
state->setMode(GL_RESCALE_NORMAL, osg::StateAttribute::ON);

As in OpenGL, enabling this feature only restores your normals to unit length if they
were affected by uniform scaling. If the scaling in your scene graph is non-uniform, you
can enable normalization to restore them to unit length.

osg::StateSet* state = geode->getOrCreateStateSet();
state->setMode(GL_NORMALIZE, osg::StateAttribute::ON);

Normalization is typically more expensive that normal rescaling; avoid it if possible.

Lighting State
To obtain any lighting effects from OSG, you must enable lighting and at least one light
source. The osgviewer application does this by default by setting the appropriate modes
in a root node StateSet. You can do the same in your application. The following code
snippet enables lighting and two light sources (GL_LIGHT0 and GL_LIGHT1) on root’s
StateSet.

osg::StateSet* state = root->getOrCreateStateSet();
state->setMode(GL_LIGHTING, osg::StateAttribute::ON);
state->setMode(GL_LIGHT0, osg::StateAttribute::ON);
state->setMode(GL_LIGHT1, osg::StateAttribute::ON);

The following sections describe how to control individual light source properties, such
as its position and color, and how to control the OpenGL color material feature (and
set surface material colors).

OSG also provides the osg::LightModel StateAttribute to control the global ambient
color, local viewer, two-sided lighting, and separate specular color OpenGL features.

Light Sources
To add a light source to your scene, create an osg::Light object to define the light
source parameters. Add the Light to an osg::LightSource node, and add the
LightSource node to your scene graph. LightSource is effectively a leaf node
containing a single Light definition. The light source defined by Light affects your
entire scene.

OSG supports eight simultaneous light sources, GL_LIGHT0 through GL_LIGHT7, and
possibly more, depending on your underlying OpenGL implementation. Enabling
multiple light sources can adversely impact performance of vertex-limited applications.

 OpenSceneGraph Quick Start Guide 69

OSG lets you use more light sources than the underlying OpenGL implementation
supports, but this is beyond the scope of this book.

Enable each light with setMode() as described previously. To associate a Light object
with an OpenGL light source, set the light’s number. For example, to associate a Light
object with GL_LIGHT2, set its number to two:

// Create a Light object to control GL_LIGHT2’s parameters.
osg::ref_ptr<osg::Light> light = new osg::Light;
light->setLightNum(2);

The light number is zero by default.

The Light class exposes much of the functionality found in the OpenGL glLight()
command. Light methods allow your application to set the light’s ambient, diffuse, and
specular color contributions. You can create point, directional, or spot lights, and you
can specify attenuation to diminish the light intensity with distance. The following code
creates a Light object and sets some commonly used parameters.

// Create a white spot light source
osg::ref_ptr<osg::Light> light = new osg::Light;
light->setAmbient(osg::Vec4(.1f, .1f, .1f, 1.f));
light->setDiffuse(osg::Vec4(.8f, .8f, .8f, 1.f));
light->setSpecular(osg::Vec4(.8f, .8f, .8f, 1.f));
light->setPosition(osg::Vec3(0.f, 0.f, 0.f));
light->setDirection(osg::Vec3(1.f, 0.f, 0.f));
light->setSpotCutoff(25.f);

To add the Light to your scene, create a LightSource node, add the Light to the
LightSource, and attach the LightSource to your scene graph. The location within
your scene graph where you attach the LightSource node affects the Light position.
OSG transforms the Light position by the current transformation for the LightSource

Warning

Many new OSG developers mistakenly assume that LightSource child
subgraphs are automatically lit. This is not the case! OSG lights your
scene graph based on current state, not based on any hierarchical
relationship to the LightSource node. GL_LIGHTING and at least one light
source (GL_LIGHT0, for example) must be enabled for OSG to light your
scene graph.

Think of LightSource as a leaf node that contains a single Light.
However, you can attach children to a LightSource node because
LightSource derives from Group. Typically, this is where applications
attach geometry to render the physical manifestation of the light.

70 Building a Scene Graph

node. OSG application developers typically attach the LightSource as a child to a
MatrixTransform to control the Light position, as the following code shows:

// Create the Light and set its properties.
osg::ref_ptr<osg::Light> light = new osg::Light;
...

// Create a MatrixTransform to position the Light.
osg::ref_ptr<osg::MatrixTransform> mt = new osg::MatrixTransform;
osg::Matrix m;
m.makeTranslate(osg::Vec3(-3.f, 2.f, 5.f));
mt->setMatrix(m);

// Add the Light to a LightSource. Add the LightSource and
// MatrixTransform to the scene graph.
osg::ref_ptr<osg::LightSource> ls = new osg::LightSource;
parent->addChild(mt.get());
mt->addChild(ls.get());
ls->setLight(light.get());

OSG transforms the Light position by the current transformation for the LightSource
by default. You can disable this by setting the LightSource reference frame, the same
way you set the reference frame for a Transform node (described in section 2.3.3
Transform Nodes). The following code causes OSG to ignore the LightSource
transformation and treats the Light position as an absolute value.

osg::ref_ptr<osg::LightSource> ls = new osg::LightSource;
ls->setReferenceFrame(osg::LightSource::ABSOLUTE_RF);

Material Properties
The osg::Material StateAttribute exposes the functionality available in the OpenGL
glMaterial() and glColorMaterial() commands. To set Material properties in your
application, create a Material object, set colors and other parameters, and attach it to a
StateSet in your scene graph.

Material allows you to set ambient, diffuse, specular, and emissive material colors, as
well as the specular exponent (or shininess) parameter. Material defines the enumerants
FRONT, BACK, and FRONT_AND_BACK, so your application can set material properties

Positional State

When an OpenGL application issues a glLight() command to set the light
position, OpenGL transforms the position by the current model-view
matrix. In OSG, this concept is known as positional state. During the cull
traversal, OSG adds positional state items to a positional state container
to ensure they are transformed correctly during the draw traversal.

 OpenSceneGraph Quick Start Guide 71

for both front and back faces. For example, the following code sets the diffuse,
specular, and specular exponent parameters for front-facing primitives:

osg::StateSet* state = node->getOrCreateStateSet();
osg::ref_ptr<osg::Material> mat = new osg::Material;
mat->setDiffuse(osg::Material::FRONT,
 osg::Vec4(.2f, .9f, .9f, 1.f));
mat->setSpecular(osg::Material::FRONT,
 osg::Vec4(1.f, 1.f, 1.f, 1.f));
mat->setShininess(osg::Material::FRONT, 96.f);
state->setAttribute(mat.get());

Like OpenGL, the specular exponent must be in the range 1.0 to 128.0, unless an
implementation relaxes this rule with an extension.

Setting material properties directly can be expensive for some OpenGL
implementations to process. The color material feature allows your application to
change certain material properties by changing the primary color. This is more efficient
than changing material properties directly, facilitates coherency between lit and unlit
scenes, and satisfies application material requirements in many cases.

To enable the color material feature, call Material::setColorMode(). Material defines
the following enumerants, AMBIENT, DIFFUSE, SPECULAR, EMISSION,
AMBIENT_AND_DIFFUSE, and OFF. By default, the color mode is OFF, and color
material is disabled. When your application sets the color mode to any other value, OSG
enables color material for the specified material properties and subsequent changes to
the primary color change that material property. The following code segment enables
color material, so front-facing ambient and diffuse material colors track changes to the
primary color:

osg::StateSet* state = node->getOrCreateStateSet();
osg::ref_ptr<osg::Material> mat = new osg::Material;
mat->setColorMode(osg::Material::AMBIENT_AND_DIFFUSE);
state->setAttribute(mat.get());

Note that Material automatically enables or disables GL_COLOR_MATERIAL based on
the color mode value. Your application doesn’t need to call setAttributeAndModes()
to enable or disable this feature.

Lighting Example
The Lighting example in this book’s source code creates two light sources and renders
geometry using seven different material properties. To conserve space, the source code
hasn’t been reproduced here. The example writes the scene graph to a file called
Lighting.osg. Display the scene graph with the following command:

osgviewer Lighting.osg

Figure 2-10 shows the scene graph displaying in osgviewer.

72 Building a Scene Graph

2.5 File I/O
The previous sections describe programmatic techniques for creating scene graphs with
geometry and state, and most applications create some geometry programmatically.
However, applications commonly load and display large, complex models from file.
Applications require a function that loads a model from file and returns it as a prebuilt
scene graph.

The osgDB library provides an interface that lets your application read and write 2D
image and 3D model files. The osgDB manages the OSG plugin system to support
different file types. Section 1.6.3 Components introduced the concept of plugins, and
Figure 1-9 shows how plugins fit into the overall OSG architecture.

The examples in this chapter use the osgDB for file I/O. All of the examples use the
.osg plugin to write the scene graph to an .osg file. The Lighting example uses the .osg
plugin to load a subgraph from a file called lozenge.osg, and the TextureMapping
example uses the .png plugin to load its texture image. However, the previous text
doesn’t explain this functionality. This section describes plugins in greater detail so you

Figure 2-10
The Lighting example scene graph displaying in osgviewer
This example renders six lozenges and a background plane, each with their own
material settings. Two light sources illuminate the scene.

 OpenSceneGraph Quick Start Guide 73

can use them effectively in your application. It describes the interface for reading and
writing files, how OSG searches for files, and how OSG selects plugins to load those
files.

2.5.1 Interface
The osgDB provides a file I/O interface that completely hides the underlying plugin
system from the application. Two osgDB header files define this interface.

#include <osgDB/ReadFile>
#include <osgDB/WriteFile>

To use the osgDB for file I/O in your application, include these header files in your
source code. They define several functions in the osgDB namespace for performing file
I/O.

Reading Files
Use the functions osgDB::readNodeFile() and osgDB::readImageFile() to read 3D
model and 2D image files.

osg::Node* osgDB::readNodeFile(const std::string& filename);
osg::Image* osgDB::readImageFile(const std::string& filename);

Use readNodeFile() to load a 3D model file. OSG recognizes the file type from the
file name extension and uses the appropriate plugin to convert the file to a scene graph.
readNodeFile() returns to your application a pointer to the root node of the scene
graph. Similarly, readImageFile() loads 2D image files and returns a pointer to an
Image object.

The filename parameter can contain an absolute path or a relative path. If you specify an
absolute path, OSG looks for the file in the specified location.

If filename contains a relative path (or contains just a file name), OSG searches for the
file using the osgDB data file path list. Users can set this list of directories using the
OSG_FILE_PATH environment variable, as section 1.3.3 Environment Variables
describes.

To add specific data directories to the data file path list, use the function
osgDB::Registry::getDataFilePathList(). The osgDB::Registry is a singleton—to
call this function, access the singleton instance. This function returns a reference to an
osgDB::FilePathList, which is simply a std::deque<std::string>. For example, to
add a directory stored in the string newpath, use the following line of code:

osgDB::Registry::instance()->getDataFilePathList().push_back
 (newpath);

74 Building a Scene Graph

If OSG is unable to load your file for any reason, both of these functions return NULL
pointers. To determine why the file isn’t loaded, set the OSG_NOTIFY_LEVEL
environment variable to a higher verbosity level (such as WARN), attempt to load the
file again, and check for warnings or error messages displayed in your application’s
console.

Writing Files
Use the functions osgDB::writeNodeFile() and osgDB::writeImageFile() to write
data to 3D model and 2D image files.

bool osgDB::writeNodeFile(const osg::Node& node,
 const std::string& filename);
bool osgDB::writeImageFile(const osg::Image& image,
 const std::string& filename);

If OSG can’t write the files for any reason, these functions return false. Again, set
OSG_NOTIFY_LEVEL to WARN to view messages about why the operation failed.
If the write operation succeeds, these functions return true.

If the filename parameter contains an absolute path, writeNodeFile() and
writeImageFile() attempt to write the file to the absolute location. If filename contains a
relative path (or no path at all), these functions attempt to write the file relative to the
current directory.

OSG overwrites an existing file with the same name without warning. To prevent this
behavior, your application should check for existing files and take an appropriate action.

2.5.2 Plugin Discovery and Registration
The OSG plugins are a group of shared libraries that implement the interface described
in the osgDB header file ReaderWriter. For OSG to find the plugins, their directory
must be listed in the PATH environment variable on Windows or within the
LD_LIBRARY_PATH environment variable on Linux. End users can specify
additional search directories in the OSG_LIBRARY_PATH environment variable.

Warning

Plugins might not support both read and write operations. As an example,
the OSG v2.0 3D Studio Max plugin supports reading .3ds files, but it
doesn’t support writing .3ds files. In fact, most OSG plugins support file
import, but don’t support file export.

For the most up-to-date information on supported file types, see the OSG
Wiki Web site [OSGWiki].

 OpenSceneGraph Quick Start Guide 75

OSG recognizes plugin libraries only if they conform to the following naming
convention.

• Apple—osgdb_<name>

• Linux—osgdb_<name>.so

• Windows—osgdb_<name>.dll

<name> is usually the file extension. For example, the plugin to read GIF image files is
called osgdb_gif.so on Linux systems.

It’s not always practical for developers to name their plugins using the file extension,
because some plugins support multiple file extensions. For example, the plugin that
loads RGB image files can load files with the extensions .sgi, .int, .inta. .bw, .rgba, and
.rgb. The osgDB::Registry constructor contains special code to support such plugins.
The Registry maintains an extension alias map that associates many different
extensions with the plugin that supports them.

OSG doesn’t look for all plugins and load them to discover which file types they
support. This would be too great an expense to incur at application startup. Instead,
OSG implements the Chain of Responsibility design pattern [Gamma95] to load as few
plugins as possible. When your application attempts to read or write a file using the
osgDB, OSG performs the following steps to find an appropriate plugin:

1. OSG searches its list of registered plugins for a plugin that supports the file.
Initially, the list of registered plugins contains only those plugins that were
registered in the Registry constructor. If it finds a plugin that supports the file
type and the plugin performs the I/O operation successfully, OSG returns the
loaded data.

2. If no registered plugins support the file type or the I/O operation fails, OSG
creates an appropriate plugin name using the previously described file name
rules, and attempts to load that plugin library. If the load succeeds, OSG adds
that plugin to its list of registered plugins.

3. OSG repeats step 1. If the file I/O operation fails again, OSG returns failure.

In general, plugins just work, and you rarely need to know how OSG supports file I/O
internally. However, when a file I/O operation fails, this information can help you track
down the source of the issue.

2.6 NodeKits and osgText
OSG provides a rich feature set. Nonetheless, developers commonly need to derive
their own specialized nodes from OSG’s core node classes. Moreover, derived
functionality usually doesn’t belong in core OSG and is more appropriately made
available as an additional support library. A NodeKit is a library that extends core OSG

76 Building a Scene Graph

functionality with specialized Node, StateAttribute, or Drawable objects, and adds
support for these new classes to the .osg file format with a dot OSG wrapper.

Section 1.6.3 Components introduces the concept of NodeKits and provides a high-
level overview of the NodeKits available in the OSG distribution. This section provides
an example of using one popular NodeKit, osgText, to display texture mapped text in
your scene graph.

2.6.1 osgText Components
The osgText library defines a namespace, osgText. Within that namespace are a small
handful of related classes for loading fonts and rendering strings of text.

The osgText library’s key component is the osgText::Text class. Text derives from
Drawable, and your application must add Text instances to a Geode using
addDrawable() (in the same way that you add instances of Geometry). Text displays a
character string of arbitrary length. Typically, your application creates a Text object for
each string to display.

The other key osgText component is the osgText::Font class. osgText provides a
convenience function to create a Font from a font file name. Font uses the FreeType
plugin to load a font file. When your application associates a Font with a Text object,
Font creates a texture map containing only the glyphs necessary to render the text
string. At render time, Text draws a texture mapped quadrilateral for each character in
its text string using texture coordinates that display the corresponding glyph from the
texture.

osgText also defines a String class to support multibyte and international text
encodings.

2.6.2 Using osgText
Two header files define the Text and Font objects. The following code illustrates how
to include them in your application:

#include <osgText/Font>
#include <osgText/Text>

To use osgText in your application, you usually need to perform three steps:

1. To display multiple text strings using the same font, create a single Font object
that you can share between all Text objects.

2. For each text string to display, create a Text object. Specify options for
alignment, orientation, position, and size. Assign the Font object you created
in step 1 to the new Text object.

3. Add your Text objects to a Geode using addDrawable(). You can add
multiple Text objects to a single Geode or create multiple Geode objects,

 OpenSceneGraph Quick Start Guide 77

depending on your application requirements. Add your Geode objects as child
nodes in your scene graph.

The following code demonstrates how to create a Font object using the Courier New
TrueType font file, cour.ttf:

osg::ref_ptr<osgText::Font> font =
 osgText::readFontFile("fonts/cour.ttf");

osgText::readFontFile() is a convenience function that uses the FreeType OSG
plugin to load the font file. It uses the osgDB to find the file, so it looks in the
directories specified in OSG_FILE_PATH, as section 2.5 File I/O describes.
However, readFontFile() also searches a list of font directories for various platforms.
If readFontFile() is unable to find the specified file or the file isn’t a font,
readFontFile() returns NULL.

Use the following code to create a Text object, assign a font to it, and set the text to
display.

osg::ref_ptr<osgText::Text> text = new osgText::Text;
text->setFont(font.get());
text->setText(“Display this message.”);

Although Text::setText() appears to take a std::string as a parameter, it actually takes
an osgText::String to support multibyte encodings. osgText::String has several non-
explicit constructors that accept std::string or string literal parameters. In the code
above, calling setText() with a string literal parameter causes a runtime conversion to
an osgText::String.

If all attempts to load a font with readFontFile() fail and your application is unable to
find any usable fonts on the runtime system, don’t call Text::setFont(). In this case,
Text uses a default font that is always available.

Text has several methods that control its size, appearance, orientation, and position.
The following sections describe how to control many of these parameters.

Position
Text, like Geometry, transforms its object coordinate position during the cull and draw
traversals. By default, the position is the object coordinate origin. You can change this
value with the Text::setPosition() method, which takes a Vec3 as a parameter.

// Draw the text at (10., 0., 1.).
text->setPosition(osg::Vec3(10.f, 0.f, 1.f));

Position alone doesn’t determine where the text appears in your final image. Text uses
the transformed position, along with the orientation and alignment values, to determine
where to render the text. Orientation and alignment are discussed next.

78 Building a Scene Graph

Orientation
Orientation determines which direction the rendered text faces in 3D space. Set the
orientation with the Text::setAxisAlignment() method, and pass one of the
Text::AxisAlignment enumerants as a parameter. To create billboard-style text that
always faces the viewpoint, use Text::SCREEN.

text->setAxisAlignment(osgText::Text::SCREEN);

Alternatively, you can make the text lie in an axis-aligned plane. The default orientation
is Text::XY_PLANE, which places text in the xy plane facing positive z.

text->setAxisAlignment(osgText::Text::XY_PLANE);

Table 2-1 lists the Text::AxisAlignment enumerant values and their effect on text
orientation.

Alignment
Alignment is analogous to text alignment in a word processor or cell alignment in a
spreadsheet. It determines the horizontal and vertical alignment of the rendered text
relative to its position (as set with setPosition()). Text defines a set of enumerants
called Text::AlignmentType. Each enumerant name encodes first the horizontal
alignment, then the vertical alignment. The default is Text::LEFT_BASE_LINE, which
horizontally aligns the left edge of the text, and vertically aligns the font’s base line, with
the specified position. Figure 2-11 illustrates how different alignment types affect the
text location relative to its position.

Text::AxisAlignment
Enumerant Orientation Effect
Text::XY_PLANE (Default.) Places text in the xy plane facing positive z.

Text::XZ_PLANE Places text in the xz plane facing positive y.

Text::YZ_PLANE Places text in the yz plane facing positive x.

Text::REVERSED_XY_PLANE Places text in the xy plane facing negative z.

Text::REVERSED_XZ_PLANE Places text in the xz plane facing negative y.

Text::REVERSED_YZ_PLANE Places text in the yz plane facing negative x.

Text::SCREEN Renders text that always faces the screen.

Table 2-1
Text Orientation AxisAlignment Enumerants

 OpenSceneGraph Quick Start Guide 79

To change the text alignment, call Text::setAlignment(). The following code specifies
horizontal center alignment and top vertical alignment:

text->setAlignment(osgText::Text::CENTER_TOP);

Size
The default character height is 32 object coordinate units. The character width is
variable and depends on the font. Text renders characters with the correct aspect ratio
according to information stored in the Font object.

To change the default character height, call Text::setCharacterSize(). The following
code reduces the character height to one object coordinate unit:

text->setCharacterSize(1.0f);

By default, Text interprets the parameter to setCharacterSize() as an object coordinate
value. Text also allows you to specify the character height in screen coordinates rather
than object coordinates. Use the Text::setCharacterSizeMode() method to specify
screen coordinates.

text->setCharacterSizeMode(osgText::Text::SCREEN_COORDS);

After changing the character height mode to screen coordinates, Text scales text
geometry to maintain a constant screen size regardless of perspective effects. Note that

Figure 2-11
Text alignment types
This figure shows the effect of the 15 different AlignmentType enumerants. For each
example, the text’s position (set with setPosition()) is illustrated by a dark green
point. Left to right, top to bottom: RIGHT_BOTTOM, CENTER_BOTTOM, LEFT_BOTTOM,
RIGHT_BOTTOM_BASE_LINE, CENTER_BOTTOM_BASE_LINE,
LEFT_BOTTOM_BASE_LINE, RIGHT_BASE_LINE, CENTER_BASE_LINE,
LEFT_BASE_LINE, RIGHT_CENTER, CENTER_CENTER, LEFT_CENTER, RIGHT_TOP,
CENTER_TOP, and LEFT_TOP.

80 Building a Scene Graph

OSG sizes the text during the cull traversal based on the last frame’s projection
information, which causes a single frame latency. This latency is usually not noticeable
for applications that have high frame coherency.

Resolution
Applications regularly need to vary the glyph resolution that the font texture map uses
to avoid blurred characters. By default, the osgText NodeKit allocates 32×32 texels per
glyph. To change this value, use the Text::setFontResolution() method. The following
code increases the font resolution, so that osgText allocates 128×128 texels per
character:

text->setFontResolution(128, 128);

When multiple Text objects with different resolutions share the same Font object and
the same characters are present in the two text strings, the font texture map will contain
multiple copies of the redundant characters at different resolutions.

Note that increasing the font resolution also increases demand for hardware resources,
such as graphics card texture memory. You should use the smallest font resolution that
produces acceptable results for your character height.

Color
Text renders its character string white by default. You can change this default with the
Text::setColor() method. To specify the color, pass an osg::Vec4 rgba color value as a
parameter to setColor(). The following code causes Text to render blue character
strings:

// Set the text color to blue.
text->setColor(osg::Vec4(0.f, 0.f, 1.f, 1.f));

The osgText library’s Text and Font classes allow you to control several additional
parameters, which are beyond the scope of this book. Peruse the include/osgText/Text
and include/osgText/Font header files for more information.

2.6.3 Text Example Code
The Text example in this book’s source code demonstrates placing text relative to a
single piece of geometry. The code creates a simple scene graph consisting of a single
Geode. The Geode contains four Drawable objects, a Gouraud-shaded quadrilateral in
the xz plane and three Text objects. Two of the Text objects are screen oriented and
label the top-left and top-right corners of the quadrilateral, while the third Text object
lies in the xz plane just below the quadrilateral.

 OpenSceneGraph Quick Start Guide 81

Like the examples in this chapter, the Text example simply creates a scene graph and
writes it as an .osg file. To view the scene graph, issue the following command:

osgviewer Text.osg

Figure 2.12 shows the scene graph displayed in osgviewer.

2.6.4 The .osg File Format
All NodeKits exist as two libraries. The first implements the NodeKit’s primary
functionality using new classes derived from Node, Drawable, or StateAttribute.
Your application must link with this library in order to use these new classes. The
second library is the dot osg wrapper that allows these new classes to load from and
write to the .osg file format.

The .osg file format is plain ASCII text and not designed to be an efficient mechanism
for storing and loading data. However, it’s an excellent debugging tool. All the examples
in this chapter write their scene graphs as .osg files. This is an unnecessary step in the
rendering process—real applications create (or load) their scene graph and display it.
The examples use .osg to illustrate a useful scene graph debugging technique.

Figure 2-12
The Text example scene graph displayed in osgviewer
The Text example creates three Text objects with two different font resolutions and
orientation styles (SCREEN and XZ_PLANE).

82 Building a Scene Graph

During application development, you should write subgraphs or entire scene graphs as
.osg files when you encounter unexpected rendering behavior. You can often determine
the root cause of rendering errors by examining .osg files in a text editor. If you find
something that doesn’t look quite right, often you can edit the file manually to verify
your suspicion.

Many OSG developers post to the osg-users email list when they encounter rendering
problems. An .osg file containing a small subgraph that reproduces the problem
attached to such posts greatly increases the chance that another reader can correctly
diagnose the problem.

Listing 2-4 shows the Text example’s .osg file output. It shows how the osg library
stores its Geode and Geometry classes, as well as vertex and color data. It also
illustrates how the osgText library’s dot osg wrapper stores Text objects and their
parameters.

The format is indented for readability. Child nodes or stored data are indented two
spaces relative to their parent object, and curly braces wrap nesting levels.

Listing 2-4
The Text example scene graph .osg File
The Text example creates a scene graph consisting of a single Geode that contains
four Drawable objects, a Geometry, and three Text objects.

Geode {
 DataVariance UNSPECIFIED
 nodeMask 0xffffffff
 cullingActive TRUE
 num_drawables 4
 Geometry {
 DataVariance UNSPECIFIED
 useDisplayList TRUE
 useVertexBufferObjects FALSE
 PrimitiveSets 1
 {
 DrawArrays QUADS 0 4
 }
 VertexArray Vec3Array 4
 {
 -1 0 -1
 1 0 -1
 1 0 1
 -1 0 1
 }
 NormalBinding OVERALL
 NormalArray Vec3Array 1
 {
 0 -1 0
 }
 ColorBinding PER_VERTEX

 OpenSceneGraph Quick Start Guide 83

 ColorArray Vec4Array 4
 {
 1 0 0 1
 0 1 0 1
 0 0 1 1
 1 1 1 1
 }
 }
 osgText::Text {
 DataVariance UNSPECIFIED
 StateSet {
 UniqueID StateSet_0
 DataVariance UNSPECIFIED
 rendering_hint TRANSPARENT_BIN
 renderBinMode USE
 binNumber 10
 binName DepthSortedBin
 }
 supportsDisplayList FALSE
 useDisplayList FALSE
 useVertexBufferObjects FALSE
 font C:\OSGDev\OpenSceneGraph-Data\fonts\arial.ttf
 fontResolution 32 32
 characterSize 0.15 1
 characterSizeMode OBJECT_COORDS
 alignment LEFT_BASE_LINE
 autoRotateToScreen TRUE
 layout LEFT_TO_RIGHT
 position 1 0 1
 color 1 1 1 1
 drawMode 1
 text "Top-right"
 }
 osgText::Text {
 DataVariance UNSPECIFIED
 Use StateSet_0
 supportsDisplayList FALSE
 useDisplayList FALSE
 useVertexBufferObjects FALSE
 font C:\OSGDev\OpenSceneGraph-Data\fonts\arial.ttf
 fontResolution 32 32
 characterSize 0.15 1
 characterSizeMode OBJECT_COORDS
 alignment LEFT_BASE_LINE
 autoRotateToScreen TRUE
 layout LEFT_TO_RIGHT
 position -1 0 1
 color 1 1 1 1
 drawMode 1
 text "Top-left"

84 Building a Scene Graph

 }
 osgText::Text {
 DataVariance UNSPECIFIED
 Use StateSet_0
 supportsDisplayList FALSE
 useDisplayList FALSE
 useVertexBufferObjects FALSE
 font C:\OSGDev\OpenSceneGraph-Data\fonts\arial.ttf
 fontResolution 128 128
 characterSize 0.4 1
 characterSizeMode OBJECT_COORDS
 alignment CENTER_TOP
 rotation 0.707107 0 0 0.707107
 layout LEFT_TO_RIGHT
 position 0 0 -1.04
 color 1 1 1 1
 drawMode 1
 text "Hello OSG World"
 }
}

A Geode appears at the top level of Listing 2-4. This file shows some parameters, such
as NodeMask and CullingActive that are outside the scope of this book, followed by the
num_drawables parameter, which is set to four. The four Drawable objects are indented
one level.

The first Drawable is the Geometry object that renders the quadrilateral. It contains all
the parameters and data that the Text example specifies, as well as some additional
parameters that Geometry requires.

The three Text objects follow the Geometry object. The first two have an
autoRotateToScreen parameter set to TRUE, which always causes them to face the screen.
The third Text object contains a rotation parameter followed by four Quat values that
force the text into the xz plane. The Text objects contain other more familiar
parameters as well, such as the color (white), position values, and font file name.

As an experiment, edit the rgba color value of one of the Text objects, save the file, and
view it with osgviewer. The following line sets the color parameter to purple, for
example:

color 0.6 0 1 1

This might appear to be a trivial change, but if you are debugging a lighting problem
and suspect the light diffuse color is too dark, editing the .osg file to brighten the light
diffuse color is a quick and easy way to test your suspicion.

The first Text object contains a StateSet. The StateSet parameters are outside the
scope of this book, but they essentially specify that OSG should render the Text object
last and in back-to-front ordering for proper transparency and blending. (Internally,
Text enables blending as it renders.) The other two Text objects don’t appear to

 OpenSceneGraph Quick Start Guide 85

contain a StateSet, because the osgText library shares StateSet objects between Text
objects to conserve memory. If you examine the other two Text objects, you’ll see that
they contain the following line:

Use StateSet_0

When OSG loads the .osg file, the Use parameter indicates data sharing. In this case, it
tells OSG that the last two Text objects share the StateSet identified by StateSet_0 with
the first Text object.

As an OSG developer, you should become familiar with the .osg file format. Take the
time to examine each of the .osg files created by the examples in this chapter. You
might not understand all of the parameters, but you should at least understand the
structure and how it corresponds to the code that creates the scene graph.

 OpenSceneGraph Quick Start Guide 87

3 Using
OpenSceneGraph in

Your Application

Real applications need to do more than build a scene graph and write it out to a file.
This chapter explores techniques for integrating OSG into your application. You’ll learn
how to render a scene graph, change the view, perform picking operations, and
dynamically modify scene graph data.

3.1 Rendering
OSG doesn’t hide any functionality. OSG exposes the lowest levels of its functionality
to your application. If you want complete scene graph rendering control, you can write
code to perform the following operations in your application.

• Develop your own view management code to modify the OpenGL model-
view matrix.

• Create a window and an OpenGL context, and make them current. Write the
code to manage multiple windows and contexts if your application requires it.

• If your application uses paged databases, start the osgDB::DatabasePager.

• Instantiate osgUtil::UpdateVisitor, osgUtil::CullVisitor, and
osgUtil::RenderStage objects to implement the update, cull, and draw
traversals. If you really want total control, design your own classes to perform
these traversals.

• Write a main loop that handles events from the operating system. Call into
your view code to update the model-view matrix.

• Call glClear() before rendering a frame. Execute update, cull, and draw
traversals to render, then swap buffers.

88 Using OpenSceneGraph in Your Application

• Write additional code to support stereo and multipipe rendering if your
application or target platform requires it.

• Finally, write all of this code in a platform-independent manner, so it works
with all target platforms.

This is possible to do, but tedious and time consuming. It’s also potentially
incompatible with future versions of OSG that might modify some of the low-level
interfaces that such an application uses.

Fortunately, OSG has evolved over time to increasingly incorporate functionality that
makes it easier for applications to render. As you work with OSG, you might encounter
some of these utilities and libraries.

• osgUtil::SceneView—A class that wraps the update, cull, and draw traversals,
but doesn’t start the DatabasePager. There are several applications that use
SceneView as their main interface for rendering in OSG.

• Producer and osgProducer—Producer is an external camera library that
supports multipipe rendering. osgProducer is a library that unifies OSG and
Producer for application usage. Producer has an active user base, and there are
many Producer- and osgProducer-based OSG applications today.

OSG v2.0 adds a new library to the core OSG libraries—the osgViewer library.
osgViewer contains a set of viewer classes that encapsulate a large amount of
functionality commonly required by applications, such as display management, event
handling, and rendering. It uses the osg::Camera class to manipulate the OpenGL
model-view matrix. Unlike the SceneView class, the osgViewer library’s viewer classes
provide full support for the DatabasePager. osgViewer also simplifies support for
multiple independent views into the same scene graph.

Section 1.6.3 Components provides an overview of the osgViewer library’s two viewer
classes, Viewer, and CompositeViewer. This chapter demonstrates how your
application can use the Viewer class to implement OSG rendering functionality.

3.1.1 The Viewer Class
The Viewer example in this book’s source code demonstrates the minimal code required
to render OSG in an application. Viewer instantiates an osgViewer::Viewer object,
attaches a scene graph to it, and allows it to render. The source code is effectively three
lines long, as Listing 3-1 shows.

Listing 3-1
The Viewer example
This listing demonstrates the minimum code for rendering OSG in your application.

#include <osgViewer/Viewer>
#include <osgDB/ReadFile>

 OpenSceneGraph Quick Start Guide 89

int main(int, char **)
{
 osgViewer::Viewer viewer;
 viewer.setSceneData(osgDB::readNodeFile("cow.osg"));
 return viewer.run();
}

The similarity is no coincidence. Under the hood, the osgviewer application uses
Viewer for its rendering. osgviewer configures its Viewer for additional functionality to
do more than the code in Listing 3-1.

Changing the View
Under the hood, Viewer creates an osg::Camera object to manage the OpenGL
model-view matrix. There are two ways you can control the Camera.

• Attach a camera manipulator to the Viewer. If your application doesn’t do
this, Viewer::run() creates an osgGA::TrackballManipulator to control the
Camera. The osgGA library defines several manipulators that you can use.
Call Viewer::setCameraManipulator() to specify your own manipulator.

• Set the Camera projection and view matrices to matrices that you define. This
gives your application complete control over the view.

If you choose to set the Camera matrices directly, using Viewer::run() is impractical,
because it doesn’t allow view changes per frame. Instead, you’ll need to code a small
loop that iteratively updates the view and renders a frame. Listing 3-2 shows an example
of how to do this.

Listing 3-2
Direct view control
This listing demonstrates how to control the Viewer object’s Camera to change the
view each frame.

osgViewer::Viewer viewer;
viewer.setSceneData(osgDB::readNodeFile("cow.osg"));
viewer.getCamera()->setProjectionMatrixAsPerspective(
 40., 1., 1., 100.);

// Create a matrix to specify a distance from the viewpoint.
osg::Matrix trans;
trans.makeTranslate(0., 0., -12.);

// Rotation angle (in radians)
double angle(0.);
while (!viewer.done())
{

90 Using OpenSceneGraph in Your Application

 // Create the rotation matrix.
 osg::Matrix rot;
 rot.makeRotate(angle, osg::Vec3(1., 0., 0.));
 angle += 0.01;

 // Set the view matrix (the concatenation of the rotation and
 // translation matrices).
 viewer.getCamera()->setViewMatrix(rot * trans);

 // Draw the next frame.
 viewer.frame();
}

Section 2.2 Geodes and Geometry briefly describes OSG’s default world coordinate
system orientation. The default Camera matrices orient the world coordinate system
with positive x to the right, positive z up, and positive y into the screen. The following
text describes how to change the default Camera matrices.

The code in Listing 3-2 sets the Camera object’s projection matrix once outside the
rendering loop. Camera provides several methods for specifying the projection matrix,
which should look familiar to most OpenGL programmers.

void setProjectionMatrix(const osg::Matrix& matrix);
void setProjectionMatrixAsOrtho(double left, double right,
 double bottom, double top, double zNear, double zFar);
void setProjectionMatrixAsOrtho2D(double left, double right,
 double bottom, double top);
void setProjectionMatrixAsFrustum(double left, double right,
 double bottom, double top, double zNear, double zFar);
void setProjectionMatrixAsPerspective(double fovy,
 double aspectRatio, double zNear, double zFar);

Camera::setProjectionMatrix() takes an osg::Matrix as a parameter and is analogous
to the following sequence of OpenGL commands:

glMatrixMode(GL_PROJECTION);
glLoadMatrixf(m);

Camera::setProjectionMatrixAsOrtho() creates a projection matrix using an
algorithm identical to the glOrtho() OpenGL command, while the
setProjectionMatrixAsOrtho2D() method is more analogous to the GLU entry point,
gluOrtho2D(). Camera also provides methods for setting a perspective projection
analogous to the glFrustum() and gluPerspective() commands.

Inside the rendering loop, the code updates the Camera object’s view matrix at each
frame to increment the rotation angle. Again, Camera provides several entry points that
OpenGL developers should be familiar with. The code in Listing 3-2 sets the view
matrix explicitly with the setViewMatrix() method, and Camera also supplies the

 OpenSceneGraph Quick Start Guide 91

setViewMatrixAsLookat() method that takes parameters similar to the gluLookAt()
entry point.

Setting the Clear Color
The Camera object provides interfaces for several operations besides setting the view.
Your application uses Camera to set the clear color. The following code shows how to
set the clear color to black:

viewer.getCamera()->setClearColor(osg::Vec4(0., 0., 0., 1.));

By default, Camera clears the depth and color buffers. To change this default behavior,
use the Camera::setClearMask() method and pass in the appropriate OpenGL buffer
flags.

viewer.getCamera()->setClearMask(GL_COLOR_BUFFER_BIT |
 GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);

The above code snippet configures the Camera to clear the color, depth, and stencil
buffers at the start of each frame.

3.1.2 CompositeViewer
The osgViewer library supplies an additional viewer class that is outside the scope of
this book. This section describes it only at a high level.

While Viewer manages a single view into a scene (possibly with a group of Camera
objects to support multipipe rendering), CompositeViewer supports multiple views
into one or more scenes and allows your application to specify their rendering order.
CompositeViewer supports render-to-texture (RTT) operations, which allows your
application to use the rendered image from one view as a texture map in a subsequent
view.

For the latest information on CompositeViewer, see the OSG Wiki Web site
[OSGWiki].

3.2 Dynamic Modification
OSG allows you to dynamically modify the scene as needed to create animations. This
capability is a requirement of any interactive graphics application. You can modify the
geometric data, state parameters, Switch node settings, or even the structure of the
scene graph itself.

As Chapter 1 explains, the cull traversal stores references to geometry and state in a
render graph for processing during the draw traversal. The osgViewer library supports
many threading models, some of which run the cull and draw traversals in one or more

92 Using OpenSceneGraph in Your Application

threads. For optimum performance, OSG doesn’t impose locks for thread safety.
Instead, it requires that applications only modify the scene graph outside the cull and
draw traversals.

There are a few ways to ensure that your modifications don’t collide with the cull and
draw thread. One simple solution— modifying the scene graph outside of the
Viewer::frame() call—requires additional code within the main rendering loop. If you
desire a more elegant solution, you should perform modifications during the update
traversal.

This section covers some basic topics related to dynamic scene graph modification.

• For optimum performance and thread safety, you need to tell OSG which
parts of the scene graph you intend to modify. You do this by setting the data
variance for any Object (Node, Drawable, StateSet, etc.).

• OSG allows applications to assign callbacks to Node and Drawable objects.
OSG executes these callbacks during specific traversals. To modify a Node or
Drawable during the update traversal, applications set an update callback.

• Applications don’t always know in advance which parts of a scene graph they’ll
modify. They might need to search a scene graph to find the node of interest,
or they might allow users to pick a node using the mouse or other input
mechanism.

The following text describes each of these topics.

3.2.1 Data Variance
The osgViewer library supports threading models that allow the application main loop
to continue before the draw traversal completes. This means Viewer::frame() can
return while the draw traversal is still active. It also means that the draw traversal from
the previous frame could overlap with the update traversal of the next frame. When you
consider the implications of this threading model, it might seem impossible to avoid
colliding with the draw traversal thread. However, OSG supplies a solution with the
osg::Object::setDataVariance() method.

To set the Object data variance, call setDataVariance() with one of the
Object::DataVariance enumerant values. Initially, data variance is UNSPECIFIED.
Your application should change the data variance to either STATIC or DYNAMIC.

Cause of the Crash

As you develop code to dynamically modify the scene graph, you might
encounter an application crash or segmentation violation that occurs
during the scene graph modification. Such crashes are almost always
caused by modifying the scene graph during the cull or draw traversals.

 OpenSceneGraph Quick Start Guide 93

OSG ensures that the draw traversal returns only after processing all DYNAMIC
Drawable and StateSet object data. The draw traversal may still be processing the
render graph even after it has returned, but only STATIC data remains in the render
graph at that point. If your scene graph contains very little DYNAMIC data and the draw
traversal processes that data early in the frame, the draw traversal returns very quickly,
freeing your application for other tasks.

If your application attempts to modify non-DYNAMIC Drawable or StateSet data, you
could experience a thread collision as multiple threads attempt to access the same data.
Most operating systems handle this by aborting your application process. For this
reason, you should always mark data as DYNAMIC if your application modifies it.

The render graph contains references to only Drawable and StateSet objects.
However, if your application intends to modify a Node, such as switching a child on or
off in a Switch node, you should set the node’s data variance to DYNAMIC. This
prevents the osgUtil::Optimizer from altering your scene graph structure.

3.2.2 Callbacks
OSG allows you to assign callbacks to Node and Drawable objects. OSG executes
Node callbacks during the update and cull traversals, and executes Drawable callbacks
during the cull and draw traversals. This section describes how to dynamically modify a
Node during the update traversal using an osg::NodeCallback. OSG’s callback
interface is based on the Callback design pattern [Gamma95].

To use a NodeCallback, your application should perform the following steps.

• Derive a new class from NodeCallback.

• Override the NodeCallback::operator()() method. Code this method to
perform the dynamic modification on your scene graph.

• Instantiate your new class derived from NodeCallback, and attach it to the
Node that you want to modify using the Node::setUpdateCallback()
method.

OSG calls the operator()() method in your derived class during each update traversal,
allowing your application to modify the Node.

OSG passes two parameters to your operator()() method. The first parameter is the
address of the Node associated with your callback. This is the Node that your callback
dynamically modifies within the operator()() method. The second parameter is an
osg::NodeVisitor address. The next section describes the NodeVisitor class, and for
now you can ignore it.

To attach your NodeCallback to a Node, use the Node::setUpdateCallback()
method. setUpdateCallback() takes one parameter, the address of a class derived from
NodeCallback. The following code segment shows how to attach a NodeCallback to
a node.

94 Using OpenSceneGraph in Your Application

class RotateCB : public osg::NodeCallback
{
 ...
};

...
node->setUpdateCallback(new RotateCB);

Multiple nodes can share callbacks. NodeCallback derives (indirectly) from
Referenced, and Node keeps a ref_ptr<> to its update callback. When the last node
referencing a callback is deleted, the NodeCallback reference count drops to zero, and
it is also deleted. In the code above, your application doesn’t keep a pointer to the
RotateCB object and doesn’t need to.

The book’s example code contains a Callback example that demonstrates the use of
update callbacks. The code attaches a cow to two MatrixTransform nodes. The code
derives a class from NodeCallback and attaches it to one of the two
MatrixTransform objects. During the update traversal, the new NodeCallback
modifies the matrix to rotate one of the cows. Figure 3-1 shows the output of the
callback example.

Figure 3-1
Dynamic modification using an update callback
This figure shows the output of the Callback example program. The code dynamically
rotates the cow on the left around its vertical axis, while the cow on the right remains
unmodified.

 OpenSceneGraph Quick Start Guide 95

Listing 3-3 shows the example code, which consists of three main parts. The first part
defines a class called RotateCB, which derives from NodeCallback. The second part is
a function called createScene(), which creates the scene graph. Note that when this
function creates the first MatrixTransform object, called mtLeft, it assigns an update
callback to mtLeft with the function call mtLeft->setUpdateCallback(new
RotateCB). If you were to comment this line out and run the example, the cow
wouldn’t rotate. The final part of the example is the main() entry point that creates a
viewer and renders.

Listing 3-3
The Callback Example Source Code
This example demonstrates the process of creating a NodeCallback to update the
scene graph during the update traversal.

#include <osgViewer/Viewer>
#include <osgGA/TrackballManipulator>
#include <osg/NodeCallback>
#include <osg/Camera>
#include <osg/Group>
#include <osg/MatrixTransform>
#include <osgDB/ReadFile>

// Derive a class from NodeCallback to manipulate a
// MatrixTransform object's matrix.
class RotateCB : public osg::NodeCallback
{
public:
 RotateCB() : _angle(0.) {}

 virtual void operator()(osg::Node* node,
 osg::NodeVisitor* nv)
 {
 // Normally, check to make sure we have an update
 // visitor, not necessary in this simple example.
 osg::MatrixTransform* mtLeft =
 dynamic_cast<osg::MatrixTransform*>(node);
 osg::Matrix mR, mT;
 mT.makeTranslate(-6., 0., 0.);
 mR.makeRotate(_angle, osg::Vec3(0., 0., 1.));
 mtLeft->setMatrix(mR * mT);

 // Increment the angle for the next from.
 _angle += 0.01;

 // Continue traversing so that OSG can process
 // any other nodes with callbacks.
 traverse(node, nv);
 }

96 Using OpenSceneGraph in Your Application

protected:
 double _angle;
};

// Create the scene graph. This is a Group root node with two
// MatrixTransform children, which both parent a single
// Geode loaded from the cow.osg model file.
osg::ref_ptr<osg::Node>
createScene()
{
 // Load the cow model.
 osg::Node* cow = osgDB::readNodeFile("cow.osg");
 // Data variance is STATIC because we won't modify it.
 cow->setDataVariance(osg::Object::STATIC);

 // Create a MatrixTransform to display the cow on the left.
 osg::ref_ptr<osg::MatrixTransform> mtLeft =
 new osg::MatrixTransform;
 mtLeft->setName("Left Cow\nDYNAMIC");
 // Set data variance to DYNAMIC to let OSG know that we
 // will modify this node during the update traversal.
 mtLeft->setDataVariance(osg::Object::DYNAMIC);
 // Set the update callback.
 mtLeft->setUpdateCallback(new RotateCB);
 osg::Matrix m;
 m.makeTranslate(-6.f, 0.f, 0.f);
 mtLeft->setMatrix(m);
 mtLeft->addChild(cow);

 // Create a MatrixTransform to display the cow on the right.
 osg::ref_ptr<osg::MatrixTransform> mtRight =
 new osg::MatrixTransform;
 mtRight->setName("Right Cow\nSTATIC");
 // Data variance is STATIC because we won't modify it.
 mtRight->setDataVariance(osg::Object::STATIC);
 m.makeTranslate(6.f, 0.f, 0.f);
 mtRight->setMatrix(m);
 mtRight->addChild(cow);

 // Create the Group root node.
 osg::ref_ptr<osg::Group> root = new osg::Group;
 root->setName("Root Node");
 // Data variance is STATIC because we won't modify it.
 root->setDataVariance(osg::Object::STATIC);
 root->addChild(mtLeft.get());
 root->addChild(mtRight.get());

 return root.get();
}

 OpenSceneGraph Quick Start Guide 97

int main(int, char **)
{
 // Create the viewer and set its scene data to our scene
 // graph created above.
 osgViewer::Viewer viewer;
 viewer.setSceneData(createScene().get());

 // Set the clear color to something other than chalky blue.
 viewer.getCamera()->setClearColor(
 osg::Vec4(1., 1., 1., 1.));

 // Loop and render. OSG calls RotateCB::operator()()
 // during the update traversal.
 viewer.run();
}

RotateCB::operator()() contains a call to traverse(). This is a member method of the
osg::NodeCallback class. This call allows the update traversal
(osgUtil::UpdateVisitor) to traverse the current group node children. Requiring a call
to traverse() is a design feature that lets your NodeCallback perform either pre- or
post-traversal processing, depending on where you place your code relative to the
traverse() call. Omitting this call prevents OSG from executing child node callbacks.
The following section discusses the NodeVisitor class in more detail.

Figure 3-2 shows the scene graph that the Callback example creates. The Group root
node has two child MatrixTransform nodes that transform the single cow Geode to
two different locations. As the figure shows, one of the two MatrixTransform objects
has its data variance set to DYNAMIC, and the other uses STATIC data variance because

Figure 3-2
The Callback example program scene graph
This figure shows the Callback example program’s scene graph hierarchy. Note the two
MatrixTransform nodes have different data variance.

98 Using OpenSceneGraph in Your Application

the code never modifies it. The MatrixTransform on the left has the update callback
attached to it, which dynamically modifies the matrix during the update traversal.

As this example illustrates, dynamically modifying a node is straightforward because
attaching an update callback to a known node is trivial. The problem becomes more
complex if your application modifies a node that is buried deep within a scene graph or
selected interactively by a user. The next sections describe some methods in OSG for
runtime node identification.

3.2.3 NodeVisitors
NodeVisitor is OSG’s implementation of the Visitor design pattern [Gamma95]. In
essence, NodeVisitor traverses a scene graph and calls a function for each visited node.
This simple technique exists as a base class for many OSG operations, including the
osgUtil::Optimizer, the osgUtil library’s geometry processing classes, and file output.
OSG uses the osgUtil::UpdateVisitor class (derived from NodeVisitor) to perform
the update traversal. In the preceding section, UpdateVisitor is the NodeVisitor that
calls the NodeCallback::operator()() method. In summary, NodeVisitor classes are
used throughout OSG.

NodeVisitor is a base class that your application never instantiates directly. Your
application can use any NodeVisitor supplied by OSG, and you can code your own
class derived from NodeVisitor. NodeVisitor consists of several apply() methods
overloaded for most major OSG node types. When a NodeVisitor traverses a scene
graph, it calls the appropriate apply() method for each node that it visits. Your custom
NodeVisitor overrides only the apply() methods for the node types requiring
processing.

After loading a scene graph from file, applications commonly search the loaded scene
graph for nodes of interest. As an example, imagine a model of a robot arm containing
articulations modeled with transformations at the joints. After loading this file from
disk, an application might use a NodeVisitor to locate all the Transform nodes to
enable animation. In this case, the application uses a custom NodeVisitor and
overrides the apply(osg::Transform&) method. As this custom NodeVisitor
traverses the scene graph, it executes the apply() method for each node that derives
from Transform, and the application can perform the operations necessary to enable
animation on that node, such as saving the node address in a list.

If your NodeVisitor overrides multiple apply() methods, OSG calls the most specific
apply() method for a given node. For example, Group derives from Node. If your

Enable NodeVisitor Traversals

The NodeVisitor base class, by default, disables traversal. In your
derived class, you should initialize the base class with the enumerant
NodeVisitor::TRAVERSE_ALL_CHILDREN to enable traversal. Otherwise,
OSG won’t call any of your apply() methods.

 OpenSceneGraph Quick Start Guide 99

NodeVisitor overrides apply(Node&) and apply(Group&), OSG calls apply(
Group&) if it encounters a Group or any node derived from Group during the
traversal. If OSG encounters a Geode, it calls apply(Node&) in this example,
because Geode derives from Node, not from Group.

Searching for a node with a specific name is a simple and often useful operation. The
code in Listing 3-4 shows how to implement a class called FindNamedNode. This class
takes a string as a parameter to its constructor and stores the address of a node with a
matching name.

Listing 3-4
Definition of the FindNamedNode class
This listing shows the declaration and definition of a simple NodeVisitor that finds a
node with a specified name. The class, FindNamedNode, is part of the FindNode
example program.

// Derive a class from NodeVisitor to find a node with a
// specific name.
class FindNamedNode : public osg::NodeVisitor
{
public:
 FindNamedNode(const std::string& name)
 : osg::NodeVisitor(// Traverse all children.
 osg::NodeVisitor::TRAVERSE_ALL_CHILDREN),
 _name(name) {}

 // This method gets called for every node in the scene
 // graph. Check each node to see if its name matches
 // our target. If so, save the node's address.
 virtual void apply(osg::Node& node)
 {
 if (node.getName() == _name)
 _node = &node;

 // Keep traversing the rest of the scene graph.
 traverse(node);
 }

 osg::Node* getNode() { return _node.get(); }

protected:
 std::string _name;
 osg::ref_ptr<osg::Node> _node;
};

The traverse() method is a member of NodeVisitor. This is different from, but similar
to, the traverse() call in section 3.2.2 Callbacks, which is a member of
NodeCallback. When traversing a scene graph, a NodeVisitor uses the following
rules.

100 Using OpenSceneGraph in Your Application

• A vanilla NodeVisitor configured to TRAVERSE_ALL_CHILDREN traverses its
children.

• Custom NodeVisitor classes that override one or more apply() methods are
responsible for calling NodeVisitor::traverse() to traverse a node’s children.
This requirement allows your custom NodeVisitor to perform pre- and post-
traversal operations, and stop traversal if necessary.

• When using callbacks executed by NodeVisitor classes, such as an update
callback as described in the previous section, the NodeVisitor traverses the
children of nodes without a callback. NodeVisitor doesn’t traverse the
children of nodes with callbacks attached. Instead, the callback method
operator()() is responsible for traversing children with a call to
NodeCallback::traverse() if the application requires traversal.

To traverse your scene graph with a NodeVisitor, pass the NodeVisitor as a parameter
to Node::accept(). You can call accept() on any node, and the NodeVisitor will
traverse the scene graph starting at that node. To search an entire scene graph, call
accept() on the root node.

The FindNamedNode class in Listing 3-4 is part of the FindNode example program.
The FindNode example loads a scene graph from disk, finds a node with a specific
name in the loaded scene graph, and modifies that node’s data before rendering it. The
FindNode example works with the State example discussed in section 2.4.3 Example
Code for Setting State, which outputs a scene graph to a file. When FindNode loads
this file, it finds the MatrixTransform node with a StateSet configured for flat
shading, and changes the state to smooth shading.

3.2.4 Picking
Most 3D applications require some form of picking functionality to allow the end user
to select a portion of the displayed image. In its simplest form, the user positions the
mouse over the displayed scene and clicks a mouse button. Internally, the application
performs an operation to map the 2D xy mouse location to the corresponding scene
graph node and stores the node address for future operations.

In essence, OSG-based applications perform two operations to implement picking.

• Receive mouse events. The osgGA library provides event classes that allow
applications to receive mouse events in a platform-independent manner.

• Determine which part of the scene graph is under the mouse cursor. The
osgUtil library provides intersection classes that create a volume around the
mouse xy location and allow you to intersect that volume with your scene
graph. osgUtil returns a list of nodes intersected by the volume, which are
sorted in front-to-back order.

This section describes how to implement both of these operations.

 OpenSceneGraph Quick Start Guide 101

Capturing Mouse Events
As section 1.6.3 Components states, the osgGA library provides platform-independent
GUI event support. The examples in this chapter use osgGA::TrackballManipulator
for manipulating the view matrix. TrackballManipulator takes mouse events as input
and modifies the viewer’s osg::Camera view matrix.

TrackballManipulator derives from osgGA::GUIEventHandler.
GUIEventHandler is an abstract base class that your application doesn’t instantiate
directly. Instead, applications derive classes from GUIEventHandler to perform
operations based on GUI events. To perform mouse-based picking, derive a class from
GUIEventHandler and override the GUIEventHandler::handle() method to receive
mouse events. Create an instance of your new class and attach it to your application’s
viewer.

The handle() method takes two parameters, an osgGA::GUIEventAdapter and an
osgGA::GUIActionAdapter, as the following example shows:

virtual bool GUIEventHandler::handle(
 const osgGA::GUIEventAdapter& ea,
 osgGA::GUIActionAdapter& aa);

Your implementation of handle() receives GUI events including mouse events in the
GUIEventAdapter. The GUIEventAdapter header file declares an EventType
enumerant that allow your application to examine only events of interest, such as mouse
events. Retrieve the event type with the GUIEventAdapter::getEventType() method.

GUIActionAdapter is your application’s interface back to the GUI system. In the case
of mouse picking, attach your picking GUIEventHandler to your viewer class. As a
result, the GUIActionAdapter is your viewer class. This is so you can perform an
intersection with your scene based on the current view.

Before rendering with your viewer, create an instance of your new GUIEventHandler
class and attach it to your viewer with the Viewer::addEventHandler() method. As its
name implies, viewers can have multiple event handlers, and Viewer adds your event
handler to a list of possibly several event handlers. Viewer calls handle() for each GUI
event until one of the handle() methods returns true.

The code in Listing 3-5 contains a class called PickHandler that derives from
GUIEventHandler. The implementation of the handle() method supports the PUSH,
MOVE, and RELEASE mouse event types. It records the mouse xy location on PUSH and
MOVE events, and if the mouse doesn’t move, the RELEASE event triggers a pick
operation. If the pick succeeds, handle() returns true. It returns false in all other cases
to allow other event handlers to examine the event.

The pick operation is performed on RELEASE only if the mouse doesn’t move. This
allows mouse motion events to pass to other event handlers, such as a
TrackballManipulator.

102 Using OpenSceneGraph in Your Application

Listing 3-5
The PickHandler class
To implement picking in OSG, use a subclass derived from
osgGA::GUIEventHandler. This listing shows the PickHandler class from the Picking
example program. The class defines two methods, one for receiving mouse events,
and the other for implementing the pick operation on mouse release.

// PickHandler -- A GUIEventHandler that implements picking.
class PickHandler : public osgGA::GUIEventHandler
{
public:

 PickHandler() : _mX(0.),_mY(0.) {}
 bool handle(const osgGA::GUIEventAdapter& ea,
 osgGA::GUIActionAdapter& aa)
 {
 osgViewer::Viewer* viewer =
 dynamic_cast<osgViewer::Viewer*>(&aa);
 if (!viewer)
 return false;

 switch(ea.getEventType())
 {
 case osgGA::GUIEventAdapter::PUSH:
 case osgGA::GUIEventAdapter::MOVE:
 {
 // Record mouse location for the button press
 // and move events.
 _mX = ea.getX();
 _mY = ea.getY();
 return false;
 }
 case osgGA::GUIEventAdapter::RELEASE:
 {
 // If the mouse hasn't moved since the last
 // button press or move event, perform a
 // pick. (Otherwise, the trackball
 // manipulator will handle it.)
 if (_mX == ea.getX() && _mY == ea.getY())
 {

 if (pick(ea.getXnormalized(),
 ea.getYnormalized(), viewer))
 return true;
 }
 return false;
 }

 default:
 return false;

 OpenSceneGraph Quick Start Guide 103

 }
 }

protected:
 // Store mouse xy location for button press & move events.
 float _mX,_mY;

 // Perform a pick operation.
 bool pick(const double x, const double y,
 osgViewer::Viewer* viewer)
 {
 if (!viewer->getSceneData())
 // Nothing to pick.
 return false;

 double w(.05), h(.05);
 osgUtil::PolytopeIntersector* picker =
 new osgUtil::PolytopeIntersector(
 osgUtil::Intersector::PROJECTION,
 x-w, y-h, x+w, y+h);

 osgUtil::IntersectionVisitor iv(picker);
 viewer->getCamera()->accept(iv);

 if (picker->containsIntersections())
 {
 Const osg::NodePath& nodePath =
 picker->getFirstIntersection().nodePath;
 unsigned int idx = nodePath.size();
 while (idx--)
 {
 // Find the LAST MatrixTransform in the node
 // path; this will be the MatrixTransform
 // to attach our callback to.
 osg::MatrixTransform* mt =
 dynamic_cast<osg::MatrixTransform*>(
 nodePath[idx]);
 if (mt == NULL)
 continue;

 // If we get here, we just found a
 // MatrixTransform in the nodePath.

 if (_selectedNode.valid())
 // Clear the previous selected node's
 // callback to make it stop spinning.
 _selectedNode->setUpdateCallback(NULL);

 _selectedNode = mt;

104 Using OpenSceneGraph in Your Application

 _selectedNode->setUpdateCallback(new RotateCB);
 break;
 }
 if (!_selectedNode.valid())
 osg::notify() << "Pick failed." << std::endl;
 }
 else if (_selectedNode.valid())
 {
 _selectedNode->setUpdateCallback(NULL);
 _selectedNode = NULL;
 }
 return _selectedNode.valid();
 }
};

int main(int argc, char **argv)
{
 // create the view of the scene.
 osgViewer::Viewer viewer;
 viewer.setSceneData(createScene().get());

 // add the pick handler
 viewer.addEventHandler(new PickHandler);

 return viewer.run();
}

Listing 3-5 also shows the main() function of the Picking example program to illustrate
using the Viewer::addEventHandler() method to attach an event handler to a viewer.

In summary, to receive mouse events for picking, perform the following steps:

• Derive a class from GUIEventHandler. Override the handle() method.

• In handle(), examine the event type in the GUIEventAdapter parameter to
select events of interest and perform any necessary operations. Return true to
prevent other event handlers from receiving an event.

• Before rendering, create an instance of your event handler class and add it to
your viewer with the addEventHandler() method. OSG passes your viewer
to your handle() method as the GUIActionAdapter parameter.

These techniques aren’t limited to mouse-based picking. Your application can
implement classes similar to TrackballManipulator by receiving mouse events in the
same manner. You can also receive keyboard events and implement operations in
responses to key presses.

The following section completes the discussion of mouse-based picking by describing
how to determine which part of your scene graph is under a user mouse press.

 OpenSceneGraph Quick Start Guide 105

Intersections
Think of mouse picking as shooting a ray from the mouse position into your scene. The
part of the scene under the mouse has an intersection with that ray. Ray intersections
don’t meet application picking requirements when the scene consists of line and point
primitives, because mouse location round off prohibits exact mathematical intersection
with such primitives. Furthermore, in a typical perspective rendering, ray intersection
precision is inversely proportional to distance from the viewer.

Instead of a ray, OSG intersects with a pyramid volume called a polytope to overcome
both issues. The pyramid has its apex at the viewpoint, and its central axis passes
directly through the mouse location. It widens away from the viewpoint as a function of
the field of view and application-controlled width parameters.

OSG employs the inherent hierarchical nature of the scene graph to efficiently compute
intersections on the host CPU, avoiding OpenGL’s often-sluggish selection feature. The
osgUtil::IntersectionVisitor class derives from NodeVisitor and tests each Node
bounding volume against the intersection volume, allowing it to skip subgraph traversals
if the subgraph has no possibility of a child intersection.

IntersectionVisitor can be configured for intersection testing with several different
geometric constructs including planes and line segments. Its constructor takes an
osgUtil::Intersector as a parameter, which defines the pick geometry and performs the
actual intersection testing. Intersector is a pure virtual base class that your application
doesn’t instantiate. The osgUtil library derives several classes from Intersector to
represent different geometric constructs, including the osgUtil::PolytopeIntersector,
which is ideal for mouse-based picking.

Some applications require picking individual vertices or polygons. Other applications
simply need to know the parent Group or Transform node containing any selected
geometry. To meet these requirements, IntersectionVisitor returns an
osg::NodePath. NodePath is a std::vector<osg::Node> that represents the path
through the node hierarchy leading from the root node down to a leaf node. If your
application requires an intermediate group node, search the NodePath from back to
front until you find a node that meets your application requirements.

In summary, to perform mouse-based picking in OSG, write your application to
perform the following steps.

• Create and configure a PolytopeIntersector using the normalized mouse
location stored in the GUIEventAdapter.

• Create an IntersectionVisitor and pass the PolytopeIntersector as a
parameter in the constructor.

• Launch the IntersectionVisitor on your scene graph’s root node, usually
through the Viewer Camera, as in the following code:

// ‘iv’ is an IntersectionVisitor
viewer->getCamera()->accept(iv);

106 Using OpenSceneGraph in Your Application

• If the PolytopeIntersector contains intersections, obtain the NodePath and
search it to find the node of interest.

Listing 3-5 shows the PickHandler::pick() method from the Picking example program.
The Picking example program creates a scene graph similar to the scene graph that the
Callback program creates. However, the Picking scene graph uses a hierarchy of two
MatrixTransform nodes, one to store a translation and the other to store a rotation.
Upon a successful pick, the code searches the NodePath until it encounters the
rotation MatrixTransform. It attaches an update callback to that node to dynamically
rotate the child geometry.

When you run the Picking example program, it displays two cows like the Callback
example program. However, you can pick either cow, and the program rotates the
selected cow in response.

 OpenSceneGraph Quick Start Guide 107

Appendix: Where to
Go From Here

Hopefully this book is a good introduction to OSG. As a quick start guide, however,
this book isn’t a complete OSG resource. This section describes additional sources of
information that many OSG developers find useful.

Source Code
From a developer’s perspective, the primary benefit of an open source product is that
the source code is available. As you develop OSG-based application software, many
issues you encounter can be resolved quickly and easily by stepping through the OSG
source code to find out what’s happening internally.

If you haven’t done so already, download the full OSG source code, as described in
section 1.2 Installing OSG and create your own OSG binaries with debugging
information. Building OSG for the first time can be confusing and time consuming, but
this investment pays excellent dividends during the development phase of your
application software.

The OSG source code distribution also comes with a rich collection of well-written and
informative example programs that demonstrate correct usage of many OSG features
not covered in this short book. These example programs are invaluable to anyone doing
OSG development work.

It’s possible to develop OSG applications using only the OSG binaries, but access to
the source code distribution, examples, and debug binaries speeds the development
process.

The OSG Wiki
The OSG Wiki Web site [OSGWiki] contains an enormous wealth of information
pertaining to OSG, including the latest OSG news, tips for downloading, building, and
installing, additional documentation contributed by members of the OSG community,
example data, information on OSG community events, OSG-compatible components
created by the OSG community, and support information.

http://www.openscenegraph.org/

108 Appendix: Where to Go From Here

The osg-users Email List
The osg-users email list puts you in touch with other OSG users and developers. If you
run into an issue while trying to build OSG, can’t figure out how to code a sticky
problem, or have a question about some aspect of OSG’s internal operation, a post to
osg-users usually generates a handful of helpful replies. To subscribe to the osg-users
email list, visit the following URL.

http://www.openscenegraph.org/mailman/listinfo/osg-users

Professional Support
As a testament to OSG’s success, several companies provide OSG development,
consulting, training, and documentation services. Rates, fees, and availability vary by
company. For the most current information on services, post an inquiry to the osg-users
email list, or visit the following URL.

http://www.openscenegraph.org/osgwiki/pmwiki.php/Support/Support

 OpenSceneGraph Quick Start Guide 109

Glossary

.osg An ASCII-based OSG native format, capable of storing all
scene graph elements.

Data variance An osg::Object property that specifies whether the
application intends to dynamically modify the Object data.
Set this property with the Object::setDataVariance()
method and pass in Object::DYNAMIC or
Object::STATIC. See Object.

Data file path list OSG searches this list of directories when your application
attempts to read a 2D image or 3D model file using the
osgDB interface.

Dot OSG wrapper This is an OSG plugin library that allows NodeKits to
perform file I/O on .osg files.

Drawable The osg::Drawable class contains geometry for rendering.
Objects of type Geode (see Geode) contain lists of
Drawable objects in the scene graph. The render graph (see
render graph) contains references to Drawable objects.

Geode The osg::Geode class is the OSG leaf node. Geode objects
have no children, but have a list of osg::Drawable objects
(see Drawable) and may also have an osg::StateSet (see
StateSet). The name is a combination of the words
“geometry” and “node”. See also leaf node. See osg::Geode
in the Geode header file.

Group The osg::Group class supports the generic scene graph
group node concept. It can serve as both a group node and
a root node. Many scene graph classes derive from
osg::Group to support multiple children. See also group node.

Group node Group nodes have children. The group node has one or
more parents, unless it is the root node (see root node).

Leaf node Leaf nodes are scene graph nodes that have no children. In
most scene graphs, leaf nodes contain rendering data, such
as geometry.

110 Glossary

Library GPL Formally known as the GNU Lesser General Public
License. This less-restrictive form of the GNU General
Public License is the basis of OSG’s licensing.

Multipipe rendering A parallel process that spreads the rendering workload over
multiple graphics rendering cards or systems. In a typical
multipipe scenario, displays are arranged side-by-side or in
an array (or wall), and each graphics card renders part of a
scene to one display.

Node The base class of all OSG nodes. See the osg::Node class
in the Node header.

NodeKit An OSG NodeKit is a module that enhances core OSG
functionality by adding new scene graph Node classes.

NodeVisitor A class that traverses a scene graph, performing operations
on (or collecting data from) nodes encountered during the
traversal. The osg::NodeVisitor class implements the
Visitor design pattern [Gamma95].

Object A pure virtual base class that defines some basic properties
and methods common to the Node, Drawable,
StateAttribute, and StateSet classes, and other OSG
entities.

Picking A common interaction between the user and a 3D graphics
software application in which the user selects an object of
interest from a rendered image, usually by positioning the
mouse cursor over the object and clicking a button.

Plugin An architecture that allows software to dynamically load
libraries or modules that conform to a standard interface;
any library or module conforming to a plugin architecture.
OSG employs a plugin architecture for 2D and 3D file
support. Libraries conforming to the interface defined in
osgDB::ReaderWriter are collectively known as the OSG
plugins. Applications access OSG plugins through the
osgDB library.

Positional State Any state value containing a position that is affected by the
current transformation matrix. Clip plane and Light source
position are two examples of positional state.

Pseudoloader An OSG plugin that provides scene graph functionality
instead of loading a file. The trans pseudoloader, for
example, places a Transform node above the root node of
loaded scene graph data.

Render graph A collection of references to Drawable and StateSet
objects. The cull traversal creates the render graph from the

 OpenSceneGraph Quick Start Guide 111

scene graph. The draw traversal sends geometry and state
data from the render graph to the underlying graphics
hardware for final display.

Rendering state Internal variables that control geometry processing and
rendering. OSG rendering state is composed of modes
(Boolean feature variables, such as lighting and fog that can
be enabled or disabled) and attributes (variables that
configure enabled features, such as fog color and blending
equations).

Root node The parent node of all nodes in a scene graph. By definition,
the root node has no parent node.

Smart pointer A C++ class that contains a pointer and maintains a
reference count associated with the memory it points to. An
instance of a smart pointer usually increments the reference
count in the constructor and decrements it in the destructor.
When the reference count reaches zero, the memory is
deleted. In OSG, ref_ptr<> is a smart pointer.

StateSet An OSG object that stores state values. They are associated
with Node and Drawable objects and can be shared to
improve efficiency. During the cull traversal, OSG sorts
some Drawable objects by their StateSet.

Stripification The process of converting a collection of individual
triangles that implicitly share vertices into a more efficient
collection of triangle strip primitives with explicit vertex
sharing.

Viewer An OSG class that manages one or more views into the
scene. The Viewer class manages render surfaces (such as
windows or frame buffer objects), camera manipulators for
changing the view(s), and event handlers.

 OpenSceneGraph Quick Start Guide 113

Bibliography

[ARB05] OpenGL ARB, Dave Shreiner, Mason Woo, Jackie Neider, and Tom
Davis, OpenGL® Programming Manual, Fifth Edition. Boston: Addison-
Wesley, 2005.

[Gamma95] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides,
Design Patterns: Elements of Reusable Object-Oriented Software. Boston:
Addison-Wesley, 1995.

[MacOSXTips] OSG Apple QuickTime video documentation.
http://www.openscenegraph.org/
 index.php?page=Tutorials.MacOSXTips

[Martz06] Martz, Paul, OpenGL® Distilled. Boston: Addison-Wesley, 2006.

[OSGWiki] OpenSceneGraph Wiki Web site,
http://www.openscenegraph.org/

[OSGBooks] OpenSceneGraph Books Web site, http://www.osgbooks.com/

 [Rost06] Rost, Randi. OpenGL® Shading Language, Second Edition. Boston:
Addison-Wesley, 2006.

 OpenSceneGraph Quick Start Guide 115

Index

ABSOLUTE_RF
LightSource, 70
Transform, 49

accept(), 100
addChild(), 35, 36, 37, 38
addDrawable(), 19, 45, 76
addEventHandler(), 101, 104
addPrimitiveSet(), 43
AGP, 4
AlignmentType, 78
AMBIENT_AND_DIFFUSE, 71
Andes Computer Engineering, ii, xiii, 2
ARB, xi, 113
AxisAlignment, 78
BACK

CullFace, 56, 57, 61, 62
Material, 70

Backface. See Culling
Binding, 39, 43
BlendFunc, 58
Camera, 88, 89, 90, 91, 95, 101, 105

setClearMask(), 91
setProjectionMatrix(), 90
setProjectionMatrixAsOrtho(),

90
setProjectionMatrixAsOrtho2D()

, 90
setViewMatrix(), 90
setViewMatrixAsLookat(), 91

CGSD, ix, xiii
CompositeViewer, 28, 88, 91
CullFace

BACK, 56, 57, 61, 62
FRONT, 57, 71
FRONT_AND_BACK, 57

Culling, 8, 15
CullFace, 56, 57, 60, 61, 62

CullVisitor, 87
Data file path list, 73
DatabasePager, 27, 87, 88
DataVariance, 92
DelaunayTriangulator, 26
DOF (Degrees of Freedom) node, 28
done(), 89
Drawable, 9, 22, 23, 28, 39, 43, 45, 55,

56, 57, 59, 60, 61, 76, 80, 81, 82, 84,
92, 93, 109, 110
getOrCreateStateSet(), 55, 56, 57,

59, 60, 61, 65, 68, 71
DrawArrayLengths, 44
DrawArrays, 39, 42, 43, 44, 82
DrawElementsUByte, 43
DrawElementsUInt, 44
DrawElementsUShort, 43
DrawPixels, 43
DYNAMIC, 92, 93, 96, 97, 109
Environment Variables, 8, 73

LD_LIBRARY_PATH, 74
OSG_FILE_PATH, 8, 9, 73, 77
OSG_LIBRARY_PATH, 74
OSG_NOTIFY_LEVEL, 9, 11, 74
PATH, 74

EventType, 101
FilePathList, 73
FindNamedNode, 99, 100
FindNode example program, 99, 100
FLATTEN_STATIC_TRANSFORMS

, 26
Font, 76, 77, 79, 80
frame(), 9
FreeType, 29, 76, 77
FRONT

CullFace, 57, 71
Material, 70, 71

116 Index

PolygonMode, 71
FRONT_AND_BACK

CullFace, 57
Material, 70
PolygonMode, 59, 61, 62

Fullscreen, 8
Geode, 22, 23, 35, 36, 37, 38, 39, 42,

45, 47, 49, 52, 59, 60, 61, 76, 80, 82,
84, 96, 97, 109
addDrawable(), 19, 45, 76

Geometry, 9, 22, 23, 26, 31, 35, 38, 39,
42, 43, 44, 45, 55, 57, 60, 61, 64, 67,
76, 77, 82, 84
addPrimitiveSet(), 43
Data binding, 39, 43
setColorArray(), 43
setColorBinding(), 43
setNormalArray(), 43
setNormalBinding(), 43
setTexCoordArray(), 64
setTexCoordBinding(), 65
setVertexArray(), 43

getCamera(), 89, 90, 91, 97, 103, 105
getDataFilePathList(), 73
getEventType(), 101, 102
getFirstIntersection(), 103
getNumChildren(), 19, 46
getNumParents(), 47, 48
getOrCreateStateSet(), 55, 56, 57, 59,

60, 61, 65, 68, 71
getParents(), 47
getSceneData(), 103
getX(), 102
getXnormalized(), 102
getY(), 102
getYnormalized(), 102
GL_COLOR_BUFFER_BIT, 91
GL_COLOR_MATERIAL, 71
GL_CULL_FACE, 57, 62
GL_DEPTH_BUFFER_BIT, 91
GL_FOG, 57
GL_LIGHT, 59, 60, 68, 69
GL_LIGHTING, 59, 60, 68
GL_LINES, 44
GL_NORMALIZE, 68
GL_POINTS, 44
GL_PROJECTION, 90

GL_RESCALE_NORMAL, 68
GL_STENCIL_BUFFER_BIT, 91
GL_TEXTURE_*D, 66, 67
GL_TEXTURE_CUBE_MAP, 66
GL_TEXTURE_GEN_*, 66
GL_TEXTURE_RECTANGLE, 66
GL_TRIANGLE_STRIP, 44
glClear(), 87
glColorMaterial(), 70
glColorPointer(), 43
glDisable(), 23, 55, 57
glDrawArrays(), 43
glDrawElements(), 43, 44
glDrawPixels(), 43
glEnable(), 23, 55, 57
glFrustum(), 90
glLight(), 69
glLoadMatrix*(), 49
glMaterial*(), 70
glNormalPointer(), 43
glOrtho(), 90
glRotate*(), 49
glScale*(), 49
GLU, 90
gluLookAt(), 91
gluOrtho2D(), 90
gluPerspective(), 90
glVertexPointer, 43
GPL, 18, 110
Group, 22, 35, 36, 37, 38, 45, 46, 47,

48, 52, 54, 59, 60, 61, 95, 96, 97, 98,
105, 109
addChild(), 35, 36, 37, 38
getNumChildren(), 19, 46

Group node, 13
GUIActionAdapter, 101, 102, 104
GUIEventAdapter, 101, 102, 104, 105

EventType, 101
getEventType(), 101, 102
getX(), 102
getXnormalized(), 102
getY(), 102
getYnormalized(), 102
MOVE, 101, 102
PUSH, 101, 102
RELEASE, 101, 102

GUIEventHandler, 101, 102, 104

 OpenSceneGraph Quick Start Guide 117

handle(), 101, 104
handle(), 101, 104
Image, 65, 66, 73, 74
INHERIT, 59, 67
InstallShield, 5
IntersectionVisitor, 25, 103, 105
Intersector, 25, 103, 105

containsIntersections(), 103
Derived classses

LineSegmentIntersector, 25
PlaneIntersector, 25
PolytopeIntersector, 25, 103,

105, 106
getFirstIntersection(), 103
PROJECTION, 103

Leaf node, 13
Level of detail. See LOD
LGPL. See GPL
Light, 68, 69, 70, 110
LightModel, 68
LightSource, 68, 69, 70
LineSegmentIntersector, 25
LineWidth, 60, 61, 62
LOD, 13, 16, 22, 45, 52, 53, 54

DISTANCE_FROM_EYE_POIN
T, 53

PIXEL_SIZE_ON_SCREEN, 53
setRangeMode(), 53
USE_BOUNDING_SPHERE_CE

NTER, 53
USER_DEFINED_CENTER, 53

Lua, 19, 30
Material, 70, 71

AMBIENT_AND_DIFFUSE, 71
BACK, 70
FRONT, 70, 71
FRONT_AND_BACK, 70
setColorMode(), 71

Matrix, 49, 60, 70, 89, 90, 95, 96
MatrixTransform, 19, 22, 48, 49, 52,

59, 60, 61, 62, 70, 94, 95, 96, 97,
100, 103, 106
setMatrix(), 49

Mesa3D, 1
MOVE, 101, 102
multipipe, 110
Node

accept(), 100
getNumParents(), 47, 48
getOrCreateStateSet(), 55, 56, 57,

59, 60, 61, 65, 68, 71
getParents(), 47
ParentList, 47, 48
setUpdateCallback(), 93

NodeCallback, 54, 93, 94, 95, 97, 98
operator()(), 93, 97, 98

NodeKit, 19, 28, 31, 67, 75, 76, 80, 81,
109, 110

NodePath, 103, 105, 106
NodeVisitor, 19, 54, 93, 95, 97, 98, 99,

100, 105, 110
TRAVERSE_ALL_CHILDREN,

99
Normals, 67
Notify, 24

OSG_NOTIFY_LEVEL
environment variable, 9

NotifySeverity, 24
Object

DataVariance, 92
DYNAMIC, 92, 93, 96, 97, 109
setDataVariance(), 92, 109
STATIC, 92, 93, 96, 97, 109

OFF, 57, 60, 66, 71
ON, 57, 58, 59, 67, 68
OpenFlight, 2, 28, 29
OpenSceneGraph Professional

Services, xiii, 2
Optimizer, 19, 26, 93, 98

FLATTEN_STATIC_TRANSFOR
MS, 26

OSG Libraries
osg, 21
osgDB, 27
osgUtil, 24
osgViewer, 27

osgarchive, 30
osgconv, 30
osgdem, 30
osglogo, 5, 6
OSGMP. See Producer
osgProducer. See Producer
osgversion, 5, 6, 30

118 Index

osgviewer, 6, 7, 8, 9, 10, 30, 40, 41, 55,
60, 61, 63, 68, 71, 81, 84, 89

OVERRIDE, 58, 59, 67
ParentList, 47, 48
PBuffers, 18
PCI, 4
PickHandler(), 101, 102, 104, 106
Plugins, 2, 4, 6, 19, 20, 21, 27, 28, 29,

72, 73, 74, 75, 76, 77, 109, 110
PolygonMode, 59, 60, 61, 62

FRONT, 71
FRONT_AND_BACK, 59, 61, 62
LINE, 59, 61, 62

PositionAttitudeTransform, 22, 48, 49,
52
setAttitude(), 52
setPosition(), 52

PrimitiveSet, 22, 26, 39, 43, 44, 82
POINTS, 44
QUADS, 39, 82
TRIANGLE_STRIP, 44
Types, 39, 42, 43, 44, 82

Producer, 2, 88
PROTECTED, 58, 59, 60, 61, 67
Pseudoloader, 29, 110
PUSH, 101, 102
Quat, 49, 50, 51, 52, 84
Quaternions. See Quat
ReaderWriter, 74, 110
ReadFile header file, 73, 88, 95
readFontFile(), 77
readImageFile(), 65, 73
readNodeFile(), 73
ref(), 34, 37
ref_ptr<>, 19, 24, 33, 34, 35, 36, 37,

38, 45, 46, 47, 56, 65, 94, 111
Referenced, 24, 32, 33, 34, 35, 36, 37,

38, 45, 47, 49, 50, 55, 56, 57, 65, 94
ref(), 34, 37
unref(), 34, 35, 37

Registry, 29, 40, 73, 75
getDataFilePathList(), 73

RELATIVE_RF
Transform, 49

RELEASE, 101, 102
RenderStage, 87
Render-to-texture. See RTT

Root node, 13
RTT, 91
run(), 89, 97, 104
SceneView, 88
SeaView, 2
setAlignment(), 79
setAttitude(), 52
setAttribute(), 23, 56, 59
setAttributeAndModes(), 19, 57, 58,

59, 67, 71
setAxisAlignment(), 78
setCameraManipulator(), 89
setCharacterSize(), 79
setCharacterSizeMode(), 79
setChildValue(), 54
setClearMask(), 91
setColor(), 80
setColorArray(), 43
setColorBinding(), 43
setColorMode(), 71
setDataVariance(), 92, 109
setFont(), 77
setFontResolution(), 80
setMatrix(), 49
setMode(), 23, 57, 59, 66, 69
setNewChildDefaultValue(), 54
setNormalArray(), 43
setNormalBinding(), 43
setPosition()

PositionAttitudeTransform, 52
Text, 77, 78

setProjectionMatrix(), 90
setProjectionMatrixAsOrtho(), 90
setProjectionMatrixAsOrtho2D(),

90
setRangeMode(), 53
setTexCoordArray(), 64
setTexCoordBinding(), 65
setText(), 77
setTextureAttribute(), 23, 66, 67
setTextureAttributeAndModes(), 67
setTextureMode(), 23, 66, 67
setUpdateCallback(), 93
setVertexArray(), 43
setViewMatrix(), 90
setViewMatrixAsLookat(), 91
SG, 1, 11

 OpenSceneGraph Quick Start Guide 119

SGI, 1
ShadeModel, 60, 62

FLAT, 60, 62
ShapeDrawable, 22, 43
SmoothingVisitor, 26
StateAttribute, 28, 56, 57, 58, 59, 60,

62, 65, 66, 68, 70, 76, 81, 110
INHERIT, 59, 67
OFF, 57, 60, 66, 71
ON, 57, 58, 59, 67, 68
OVERRIDE, 58, 59, 67
PROTECTED, 58, 59, 60, 61, 67

StateSet, 23, 55, 56, 57, 59, 60, 61, 62,
64, 65, 66, 68, 70, 71, 83, 84, 85, 92,
100, 109, 110, 111
setAttribute(), 23, 56, 59
setAttributeAndModes(), 19, 57,

58, 59, 67, 71
setMode(), 23, 57, 59, 66, 69
setTextureAttribute(), 23, 66, 67
setTextureAttributeAndModes(),

67
setTextureMode(), 23, 66, 67

STATIC, 92, 93, 96, 97, 109
StatsVisitor, 26
STL, x, 18
String, 76, 77
stripification, 111
Subversion. See SVN
SVN, 3
Switch, 22, 45, 54, 91

setChildValue(), 54
setNewChildDefaultValue(), 54

TangentSpaceGenerator, 26
Tessellator, 26
TexGen, 66
Text, 76, 77, 78, 79, 80, 81, 82, 83, 84,

85
Alignment, 78, 79, 83, 84
AlignmentType, 78
AxisAlignment, 78
SCREEN, 78, 79
SCREEN_COORDS, 79
setAlignment(), 79

setAxisAlignment(), 78
setCharacterSize(), 79
setCharacterSizeMode(), 79
setColor(), 80
setFont(), 77
setFontResolution(), 80
setPosition(), 77, 78
setText(), 77
String, 76, 77
XY_PLANE, 78

Texture*D, 65, 66, 67
TextureCubeMap, 66
TextureRectangle, 66
TrackballManipulator, 89, 95, 101,

104
Transform, 26, 29, 45, 48, 49, 70, 98,

105, 110
TRAVERSE_ALL_CHILDREN, 99
TriStripVisitor, 26
unref(), 34, 35, 37
UpdateVisitor, 87, 97, 98
Vec2, 22, 42, 64
Vec2Array, 23, 42, 64
Vec3, 22, 39, 42, 49, 50, 51, 52, 53, 69,

70, 77, 90, 95
Vec3Array, 23, 39, 42, 43, 82
Vec4, 39, 42, 69, 71, 80, 91, 97
Vec4Array, 39, 42, 43, 83
View

getSceneData(), 103
Viewer, 16, 24, 28, 88, 89, 91, 92, 95,

97, 101, 102, 103, 104, 105, 111
addEventHandler(), 101, 104
done(), 89
frame(), 9
getCamera(), 89, 90, 91, 97, 103,

105
run(), 74, 89, 97, 104
setCameraManipulator(), 89

World coordinates, 40, 90
WriteFile header file, 40, 73
writeImageFile(), 74
writeNodeFile(), 40, 74
Xcode, 11

 OpenSceneGraph Quick Start Guide 121

Revision History

Date Comments

14 June 2007 Improvements and clarifications regarding Apple Mac OS X. Changed
book URL to osgbooks.com. Some minor reformatting.

6 June 2007 Technical review and copyedit. Fixes many glaring errors and clarifies
concepts and topics. Added the Index.

7 April 2007 Initial revision.

