Online Weighted Mean

by Joshua Burkholder

online_weighted_mean.pdf

online_weighted_mean.docx

 

Given the following set of inputs and their associated weights:

 

{ ( x 1 , w 1 ),( x 2 , w 2 ),,( x n1 , w n1 ),( x n , w n ) } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaada qadaqaaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaam4Damaa BaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiaacYcadaqadaqaai aadIhadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaam4DamaaBaaaleaa caaIYaaabeaaaOGaayjkaiaawMcaaiaacYcacqWIMaYscaGGSaWaae WaaeaacaWG4bWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaa cYcacaWG3bWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaaaOGaay jkaiaawMcaaiaacYcadaqadaqaaiaadIhadaWgaaWcbaGaamOBaaqa baGccaGGSaGaam4DamaaBaaaleaacaWGUbaabeaaaOGaayjkaiaawM caaaGaay5Eaiaaw2haaaaa@588C@

 

Let n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EA@  be the number of inputs and their associated weights, x ¯ n weighted MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaara Waa0baaSqaaiaad6gaaeaacaqG3bGaaeyzaiaabMgacaqGNbGaaeiA aiaabshacaqGLbGaaeizaaaaaaa@3F95@  is the weighted sample mean for the first n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EA@  inputs and their associated weights, x ¯ n1 weighted MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaara Waa0baaSqaaiaad6gacqGHsislcaaIXaaabaGaae4DaiaabwgacaqG PbGaae4zaiaabIgacaqG0bGaaeyzaiaabsgaaaaaaa@413D@  be the weighted sample mean of the first n1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgk HiTiaaigdaaaa@3892@  inputs and their associated weights, w n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaWGUbaabeaaaaa@3812@  be the n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EA@  -th weight associated with input x n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGUbaabeaaaaa@3813@ , and x n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGUbaabeaaaaa@3813@  be the n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EA@  -th input associated with w n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaWGUbaabeaaaaa@3812@ .  Then, the recurrence equation for the weighted sample mean (a.k.a. online weighted mean) is:

 

x ¯ n weighted = x ¯ n1 weighted w n ( x ¯ n1 weighted x n ) i=1 n w i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaara Waa0baaSqaaiaad6gaaeaacaqG3bGaaeyzaiaabMgacaqGNbGaaeiA aiaabshacaqGLbGaaeizaaaakiabg2da9iqadIhagaqeamaaDaaale aacaWGUbGaeyOeI0IaaGymaaqaaiaabEhacaqGLbGaaeyAaiaabEga caqGObGaaeiDaiaabwgacaqGKbaaaOGaeyOeI0YaaSaaaeaacaWG3b WaaSbaaSqaaiaad6gaaeqaaOWaaeWaaeaaceWG4bGbaebadaqhaaWc baGaamOBaiabgkHiTiaaigdaaeaacaqG3bGaaeyzaiaabMgacaqGNb GaaeiAaiaabshacaqGLbGaaeizaaaakiabgkHiTiaadIhadaWgaaWc baGaamOBaaqabaaakiaawIcacaGLPaaaaeaadaaeWbqaaiaadEhada WgaaWcbaGaamyAaaqabaaabaGaamyAaiabg2da9iaaigdaaeaacaWG UbaaniabggHiLdaaaaaa@66F2@

 

where i=1 n w i 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaaca WG3bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaa baGaamOBaaqdcqGHris5aOGaeyiyIKRaaGimaaaa@4071@ .  Preferably, all the weights are positive such that i=1 n w i >0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaaca WG3bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaa baGaamOBaaqdcqGHris5aOGaeyOpa4JaaGimaaaa@3FB2@ .

 

Proof:

 

The definition of the sample mean is:

 

x ¯ n = i=1 n x i n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaara WaaSbaaSqaaiaad6gaaeqaaOGaeyypa0ZaaSaaaeaadaaeWbqaaiaa dIhadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabg2da9iaaigdaae aacaWGUbaaniabggHiLdaakeaacaWGUbaaaaaa@4238@

 

The definition of the weighted sample mean is:

x ¯ n weighted = i=1 n w i x i i=1 n w i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaara Waa0baaSqaaiaad6gaaeaacaqG3bGaaeyzaiaabMgacaqGNbGaaeiA aiaabshacaqGLbGaaeizaaaakiabg2da9maalaaabaWaaabCaeaaca WG3bWaaSbaaSqaaiaadMgaaeqaaOGaamiEamaaBaaaleaacaWGPbaa beaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaO qaamaaqahabaGaam4DamaaBaaaleaacaWGPbaabeaaaeaacaWGPbGa eyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaaaaaa@52BE@

 

If we expand this definition, we have:

 

x ¯ n weighted = i=1 n1 w i x i + w n x n i=1 n1 w i + w n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaara Waa0baaSqaaiaad6gaaeaacaqG3bGaaeyzaiaabMgacaqGNbGaaeiA aiaabshacaqGLbGaaeizaaaakiabg2da9maalaaabaWaaabCaeaaca WG3bWaaSbaaSqaaiaadMgaaeqaaOGaamiEamaaBaaaleaacaWGPbaa beaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad6gacqGHsislcaaIXa aaniabggHiLdGccqGHRaWkcaWG3bWaaSbaaSqaaiaad6gaaeqaaOGa amiEamaaBaaaleaacaWGUbaabeaaaOqaamaaqahabaGaam4DamaaBa aaleaacaWGPbaabeaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad6ga cqGHsislcaaIXaaaniabggHiLdGccqGHRaWkcaWG3bWaaSbaaSqaai aad6gaaeqaaaaaaaa@5E42@

 

From algebra, we know that for arbitrary a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaaaa@36DD@ , b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaaaa@36DE@ , c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaaaa@36DF@ , and d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36E0@ :

 

a+b c+d = a+b c+d + a c a c = a c + a+b c+d a c = a c +( a+b c+d )( c c )( a c )( c+d c+d ) = a c + ac+bcacad c( c+d ) = a c + ac +bc ac ad c( c+d ) = a c + bcad c( c+d ) = a c + bc c( c+d ) + ad c( c+d ) = a c + b c c ( c+d ) + ad c( c+d ) = a c + ad c( c+d ) + b ( c+d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaadaWcaa qaaiaadggacqGHRaWkcaWGIbaabaGaam4yaiabgUcaRiaadsgaaaGa eyypa0ZaaSaaaeaacaWGHbGaey4kaSIaamOyaaqaaiaadogacqGHRa WkcaWGKbaaaiabgUcaRmaalaaabaGaamyyaaqaaiaadogaaaGaeyOe I0YaaSaaaeaacaWGHbaabaGaam4yaaaaaeaacqGH9aqpdaWcaaqaai aadggaaeaacaWGJbaaaiabgUcaRmaalaaabaGaamyyaiabgUcaRiaa dkgaaeaacaWGJbGaey4kaSIaamizaaaacqGHsisldaWcaaqaaiaadg gaaeaacaWGJbaaaaqaaiabg2da9maalaaabaGaamyyaaqaaiaadoga aaGaey4kaSYaaeWaaeaadaWcaaqaaiaadggacqGHRaWkcaWGIbaaba Gaam4yaiabgUcaRiaadsgaaaaacaGLOaGaayzkaaWaaeWaaeaadaWc aaqaaiaadogaaeaacaWGJbaaaaGaayjkaiaawMcaaiabgkHiTmaabm aabaWaaSaaaeaacaWGHbaabaGaam4yaaaaaiaawIcacaGLPaaadaqa daqaamaalaaabaGaam4yaiabgUcaRiaadsgaaeaacaWGJbGaey4kaS IaamizaaaaaiaawIcacaGLPaaaaeaacqGH9aqpdaWcaaqaaiaadgga aeaacaWGJbaaaiabgUcaRmaalaaabaGaamyyaiaadogacqGHRaWkca WGIbGaam4yaiabgkHiTiaadggacaWGJbGaeyOeI0Iaamyyaiaadsga aeaacaWGJbWaaeWaaeaacaWGJbGaey4kaSIaamizaaGaayjkaiaawM caaaaaaeaacqGH9aqpdaWcaaqaaiaadggaaeaacaWGJbaaaiabgUca RmaalaaabaWaaqIaaeaacaWGHbGaam4yaaaacqGHRaWkcaWGIbGaam 4yaiabgkHiTmaaKiaabaGaamyyaiaadogaaaGaeyOeI0Iaamyyaiaa dsgaaeaacaWGJbWaaeWaaeaacaWGJbGaey4kaSIaamizaaGaayjkai aawMcaaaaaaeaacqGH9aqpdaWcaaqaaiaadggaaeaacaWGJbaaaiab gUcaRmaalaaabaGaamOyaiaadogacqGHsislcaWGHbGaamizaaqaai aadogadaqadaqaaiaadogacqGHRaWkcaWGKbaacaGLOaGaayzkaaaa aaqaaiabg2da9maalaaabaGaamyyaaqaaiaadogaaaGaey4kaSYaaS aaaeaacaWGIbGaam4yaaqaaiaadogadaqadaqaaiaadogacqGHRaWk caWGKbaacaGLOaGaayzkaaaaaiabgUcaRmaalaaabaGaeyOeI0Iaam yyaiaadsgaaeaacaWGJbWaaeWaaeaacaWGJbGaey4kaSIaamizaaGa ayjkaiaawMcaaaaaaeaacqGH9aqpdaWcaaqaaiaadggaaeaacaWGJb aaaiabgUcaRmaalaaabaGaamOyamaaKiaabaGaam4yaaaaaeaadaaj caqaaiaadogaaaWaaeWaaeaacaWGJbGaey4kaSIaamizaaGaayjkai aawMcaaaaacqGHRaWkdaWcaaqaaiabgkHiTiaadggacaWGKbaabaGa am4yamaabmaabaGaam4yaiabgUcaRiaadsgaaiaawIcacaGLPaaaaa aabaGaeyypa0ZaaSaaaeaacaWGHbaabaGaam4yaaaacqGHRaWkdaWc aaqaaiabgkHiTiaadggacaWGKbaabaGaam4yamaabmaabaGaam4yai abgUcaRiaadsgaaiaawIcacaGLPaaaaaGaey4kaSYaaSaaaeaacaWG IbaabaWaaeWaaeaacaWGJbGaey4kaSIaamizaaGaayjkaiaawMcaaa aaaaaa@DA0B@

 

Hence, we have:

 

x ¯ n weighted = i=1 n1 w i x i a + w n x n b i=1 n1 w i c + w n d = ( i=1 n1 w i x i ) ( i=1 n1 w i ) + ( i=1 n1 w i x i )( w n ) ( i=1 n1 w i )( ( i=1 n1 w i )+( w n ) ) + ( w n x n ) ( ( i=1 n1 w i )+( w n ) ) =( i=1 n1 w i x i i=1 n1 w i )( i=1 n1 w i x i i=1 n1 w i )( w n i=1 n w i )+ ( w n x n ) ( i=1 n w i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaaceWG4b GbaebadaqhaaWcbaGaamOBaaqaaiaabEhacaqGLbGaaeyAaiaabEga caqGObGaaeiDaiaabwgacaqGKbaaaOGaeyypa0ZaaSaaaeaadaagba qaamaaqahabaGaam4DamaaBaaaleaacaWGPbaabeaakiaadIhadaWg aaWcbaGaamyAaaqabaaabaGaamyAaiabg2da9iaaigdaaeaacaWGUb GaeyOeI0IaaGymaaqdcqGHris5aaWcbaGaamyyaaGccaGL34pacqGH RaWkdaagbaqaaiaadEhadaWgaaWcbaGaamOBaaqabaGccaWG4bWaaS baaSqaaiaad6gaaeqaaaqaaiaadkgaaOGaay5n+daabaWaaGbaaeaa daaeWbqaaiaadEhadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabg2 da9iaaigdaaeaacaWGUbGaeyOeI0IaaGymaaqdcqGHris5aaWcbaGa am4yaaGccaGL44pacqGHRaWkdaagaaqaaiaadEhadaWgaaWcbaGaam OBaaqabaaabaGaamizaaGccaGL44paaaaabaGaeyypa0ZaaSaaaeaa daqadaqaamaaqahabaGaam4DamaaBaaaleaacaWGPbaabeaakiaadI hadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabg2da9iaaigdaaeaa caWGUbGaeyOeI0IaaGymaaqdcqGHris5aaGccaGLOaGaayzkaaaaba WaaeWaaeaadaaeWbqaaiaadEhadaWgaaWcbaGaamyAaaqabaaabaGa amyAaiabg2da9iaaigdaaeaacaWGUbGaeyOeI0IaaGymaaqdcqGHri s5aaGccaGLOaGaayzkaaaaaiabgUcaRmaalaaabaGaeyOeI0YaaeWa aeaadaaeWbqaaiaadEhadaWgaaWcbaGaamyAaaqabaGccaWG4bWaaS baaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOB aiabgkHiTiaaigdaa0GaeyyeIuoaaOGaayjkaiaawMcaamaabmaaba Gaam4DamaaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaaqaamaa bmaabaWaaabCaeaacaWG3bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadM gacqGH9aqpcaaIXaaabaGaamOBaiabgkHiTiaaigdaa0GaeyyeIuoa aOGaayjkaiaawMcaamaabmaabaWaaeWaaeaadaaeWbqaaiaadEhada WgaaWcbaGaamyAaaqabaaabaGaamyAaiabg2da9iaaigdaaeaacaWG UbGaeyOeI0IaaGymaaqdcqGHris5aaGccaGLOaGaayzkaaGaey4kaS YaaeWaaeaacaWG3bWaaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzk aaaacaGLOaGaayzkaaaaaiabgUcaRmaalaaabaWaaeWaaeaacaWG3b WaaSbaaSqaaiaad6gaaeqaaOGaamiEamaaBaaaleaacaWGUbaabeaa aOGaayjkaiaawMcaaaqaamaabmaabaWaaeWaaeaadaaeWbqaaiaadE hadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabg2da9iaaigdaaeaa caWGUbGaeyOeI0IaaGymaaqdcqGHris5aaGccaGLOaGaayzkaaGaey 4kaSYaaeWaaeaacaWG3bWaaSbaaSqaaiaad6gaaeqaaaGccaGLOaGa ayzkaaaacaGLOaGaayzkaaaaaaqaaiabg2da9maabmaabaWaaSaaae aadaaeWbqaaiaadEhadaWgaaWcbaGaamyAaaqabaGccaWG4bWaaSba aSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBai abgkHiTiaaigdaa0GaeyyeIuoaaOqaamaaqahabaGaam4DamaaBaaa leaacaWGPbaabeaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad6gacq GHsislcaaIXaaaniabggHiLdaaaaGccaGLOaGaayzkaaGaeyOeI0Ya aeWaaeaadaWcaaqaamaaqahabaGaam4DamaaBaaaleaacaWGPbaabe aakiaadIhadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabg2da9iaa igdaaeaacaWGUbGaeyOeI0IaaGymaaqdcqGHris5aaGcbaWaaabCae aacaWG3bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaI XaaabaGaamOBaiabgkHiTiaaigdaa0GaeyyeIuoaaaaakiaawIcaca GLPaaadaqadeqaamaalaaabaGaam4DamaaBaaaleaacaWGUbaabeaa aOqaamaaqahabaGaam4DamaaBaaaleaacaWGPbaabeaaaeaacaWGPb Gaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaaaakiaawIcacaGL PaaacqGHRaWkdaWcaaqaamaabmaabaGaam4DamaaBaaaleaacaWGUb aabeaakiaadIhadaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaa aeaadaqadaqaamaaqahabaGaam4DamaaBaaaleaacaWGPbaabeaaae aacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaOGaayjk aiaawMcaaaaaaaaa@167A@

 

Since the weighted sample mean for the first n1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgk HiTiaaigdaaaa@3892@  inputs and their associated weights is defined as x ¯ n1 weighted = i=1 n1 w i x i i=1 n1 w i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaara Waa0baaSqaaiaad6gacqGHsislcaaIXaaabaGaae4DaiaabwgacaqG PbGaae4zaiaabIgacaqG0bGaaeyzaiaabsgaaaGccqGH9aqpdaWcaa qaamaaqahabaGaam4DamaaBaaaleaacaWGPbaabeaakiaadIhadaWg aaWcbaGaamyAaaqabaaabaGaamyAaiabg2da9iaaigdaaeaacaWGUb GaeyOeI0IaaGymaaqdcqGHris5aaGcbaWaaabCaeaacaWG3bWaaSba aSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBai abgkHiTiaaigdaa0GaeyyeIuoaaaaaaa@57B6@  , we have:

 

x ¯ n weighted =( x ¯ n1 weighted )( x ¯ n1 weighted )( w n i=1 n w i )+ ( w n x n ) ( i=1 n w i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaara Waa0baaSqaaiaad6gaaeaacaqG3bGaaeyzaiaabMgacaqGNbGaaeiA aiaabshacaqGLbGaaeizaaaakiabg2da9maabmaabaGabmiEayaara Waa0baaSqaaiaad6gacqGHsislcaaIXaaabaGaae4DaiaabwgacaqG PbGaae4zaiaabIgacaqG0bGaaeyzaiaabsgaaaaakiaawIcacaGLPa aacqGHsisldaqadaqaaiqadIhagaqeamaaDaaaleaacaWGUbGaeyOe I0IaaGymaaqaaiaabEhacaqGLbGaaeyAaiaabEgacaqGObGaaeiDai aabwgacaqGKbaaaaGccaGLOaGaayzkaaWaaeWabeaadaWcaaqaaiaa dEhadaWgaaWcbaGaamOBaaqabaaakeaadaaeWbqaaiaadEhadaWgaa WcbaGaamyAaaqabaaabaGaamyAaiabg2da9iaaigdaaeaacaWGUbaa niabggHiLdaaaaGccaGLOaGaayzkaaGaey4kaSYaaSaaaeaadaqada qaaiaadEhadaWgaaWcbaGaamOBaaqabaGccaWG4bWaaSbaaSqaaiaa d6gaaeqaaaGccaGLOaGaayzkaaaabaWaaeWaaeaadaaeWbqaaiaadE hadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabg2da9iaaigdaaeaa caWGUbaaniabggHiLdaakiaawIcacaGLPaaaaaaaaa@7743@

 

Factoring out the 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG ymaaaa@379F@ , we have:

 

x ¯ n weighted =( x ¯ n1 weighted )( ( x ¯ n1 weighted )( w n i=1 n w i ) ( w n x n ) ( i=1 n w i ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaara Waa0baaSqaaiaad6gaaeaacaqG3bGaaeyzaiaabMgacaqGNbGaaeiA aiaabshacaqGLbGaaeizaaaakiabg2da9maabmaabaGabmiEayaara Waa0baaSqaaiaad6gacqGHsislcaaIXaaabaGaae4DaiaabwgacaqG PbGaae4zaiaabIgacaqG0bGaaeyzaiaabsgaaaaakiaawIcacaGLPa aacqGHsisldaqadeqaamaabmaabaGabmiEayaaraWaa0baaSqaaiaa d6gacqGHsislcaaIXaaabaGaae4DaiaabwgacaqGPbGaae4zaiaabI gacaqG0bGaaeyzaiaabsgaaaaakiaawIcacaGLPaaadaqadeqaamaa laaabaGaam4DamaaBaaaleaacaWGUbaabeaaaOqaamaaqahabaGaam 4DamaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaeyypa0JaaGymaaqa aiaad6gaa0GaeyyeIuoaaaaakiaawIcacaGLPaaacqGHsisldaWcaa qaamaabmaabaGaam4DamaaBaaaleaacaWGUbaabeaakiaadIhadaWg aaWcbaGaamOBaaqabaaakiaawIcacaGLPaaaaeaadaqadaqaamaaqa habaGaam4DamaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaeyypa0Ja aGymaaqaaiaad6gaa0GaeyyeIuoaaOGaayjkaiaawMcaaaaaaiaawI cacaGLPaaaaaa@78D8@

 

Combining the fractions and factoring out the w n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaWGUbaabeaaaaa@3812@ , we have:

 

x ¯ n weighted = x ¯ n1 weighted ( x ¯ n1 weighted w n w n x n i=1 n w i ) = x ¯ n1 weighted w n ( x ¯ n1 weighted x n ) i=1 n w i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaaceWG4b GbaebadaqhaaWcbaGaamOBaaqaaiaabEhacaqGLbGaaeyAaiaabEga caqGObGaaeiDaiaabwgacaqGKbaaaOGaeyypa0JabmiEayaaraWaa0 baaSqaaiaad6gacqGHsislcaaIXaaabaGaae4DaiaabwgacaqGPbGa ae4zaiaabIgacaqG0bGaaeyzaiaabsgaaaGccqGHsisldaqadeqaam aalaaabaGabmiEayaaraWaa0baaSqaaiaad6gacqGHsislcaaIXaaa baGaae4DaiaabwgacaqGPbGaae4zaiaabIgacaqG0bGaaeyzaiaabs gaaaGccaWG3bWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0Iaam4Damaa BaaaleaacaWGUbaabeaakiaadIhadaWgaaWcbaGaamOBaaqabaaake aadaaeWbqaaiaadEhadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiab g2da9iaaigdaaeaacaWGUbaaniabggHiLdaaaaGccaGLOaGaayzkaa aabaGaeyypa0JabmiEayaaraWaa0baaSqaaiaad6gacqGHsislcaaI XaaabaGaae4DaiaabwgacaqGPbGaae4zaiaabIgacaqG0bGaaeyzai aabsgaaaGccqGHsisldaWcaaqaaiaadEhadaWgaaWcbaGaamOBaaqa baGcdaqadaqaaiqadIhagaqeamaaDaaaleaacaWGUbGaeyOeI0IaaG ymaaqaaiaabEhacaqGLbGaaeyAaiaabEgacaqGObGaaeiDaiaabwga caqGKbaaaOGaeyOeI0IaamiEamaaBaaaleaacaWGUbaabeaaaOGaay jkaiaawMcaaaqaamaaqahabaGaam4DamaaBaaaleaacaWGPbaabeaa aeaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaaaaaa a@907E@

 

Therefore, the recurrence equation for the weighted sample mean (a.k.a. online weighted mean) is:

 

x ¯ n weighted = x ¯ n1 weighted w n ( x ¯ n1 weighted x n ) i=1 n w i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaara Waa0baaSqaaiaad6gaaeaacaqG3bGaaeyzaiaabMgacaqGNbGaaeiA aiaabshacaqGLbGaaeizaaaakiabg2da9iqadIhagaqeamaaDaaale aacaWGUbGaeyOeI0IaaGymaaqaaiaabEhacaqGLbGaaeyAaiaabEga caqGObGaaeiDaiaabwgacaqGKbaaaOGaeyOeI0YaaSaaaeaacaWG3b WaaSbaaSqaaiaad6gaaeqaaOWaaeWaaeaaceWG4bGbaebadaqhaaWc baGaamOBaiabgkHiTiaaigdaaeaacaqG3bGaaeyzaiaabMgacaqGNb GaaeiAaiaabshacaqGLbGaaeizaaaakiabgkHiTiaadIhadaWgaaWc baGaamOBaaqabaaakiaawIcacaGLPaaaaeaadaaeWbqaaiaadEhada WgaaWcbaGaamyAaaqabaaabaGaamyAaiabg2da9iaaigdaaeaacaWG UbaaniabggHiLdaaaaaa@66F2@

 

where i=1 n w i 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaaca WG3bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaa baGaamOBaaqdcqGHris5aOGaeyiyIKRaaGimaaaa@4071@ .

 


 

Note: If all the weights are the same constant value c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaaaa@36DF@  (i.e. w i =c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaWGPbaabeaakiabg2da9iaadogaaaa@3A05@  for i=1,,n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabg2 da9iaaigdacaGGSaGaeSOjGSKaaiilaiaad6gaaaa@3C1B@  ), the weighted sample mean would be:

 

x ¯ weighted = i=1 n w i x i i=1 n w i = i=1 n c x i i=1 n c = c( i=1 n x i ) c( i=1 n 1 ) = c ( i=1 n x i ) c ( n ) = i=1 n x i n = x ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaaceWG4b GbaebadaahaaWcbeqaaiaabEhacaqGLbGaaeyAaiaabEgacaqGObGa aeiDaiaabwgacaqGKbaaaOGaeyypa0ZaaSaaaeaadaaeWbqaaiaadE hadaWgaaWcbaGaamyAaaqabaGccaWG4bWaaSbaaSqaaiaadMgaaeqa aaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aaGcba WaaabCaeaacaWG3bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH 9aqpcaaIXaaabaGaamOBaaqdcqGHris5aaaaaOqaaiabg2da9maala aabaWaaabCaeaacaWGJbGaamiEamaaBaaaleaacaWGPbaabeaaaeaa caWGPbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaOqaamaaqa habaGaam4yaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGUbaaniab ggHiLdaaaaGcbaGaeyypa0ZaaSaaaeaacaWGJbWaaeWaaeaadaaeWb qaaiaadIhadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabg2da9iaa igdaaeaacaWGUbaaniabggHiLdaakiaawIcacaGLPaaaaeaacaWGJb WaaeWaaeaadaaeWbqaaiaaigdaaSqaaiaadMgacqGH9aqpcaaIXaaa baGaamOBaaqdcqGHris5aaGccaGLOaGaayzkaaaaaaqaaiabg2da9m aalaaabaWaaqIaaeaacaWGJbaaamaabmaabaWaaabCaeaacaWG4bWa aSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaam OBaaqdcqGHris5aaGccaGLOaGaayzkaaaabaWaaqIaaeaacaWGJbaa amaabmaabaGaamOBaaGaayjkaiaawMcaaaaaaeaacqGH9aqpdaWcaa qaamaaqahabaGaamiEamaaBaaaleaacaWGPbaabeaaaeaacaWGPbGa eyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaOqaaiaad6gaaaaaba Gaeyypa0JabmiEayaaraaaaaa@92A2@

 

For instance, if all the weights are 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@36B2@ , then the weighted sample mean is the sample mean:

 

x ¯ weighted = i=1 n w i x i i=1 n w i = i=1 n ( 1 ) x i i=1 n ( 1 ) = i=1 n x i n = x ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaaceWG4b GbaebadaahaaWcbeqaaiaabEhacaqGLbGaaeyAaiaabEgacaqGObGa aeiDaiaabwgacaqGKbaaaOGaeyypa0ZaaSaaaeaadaaeWbqaaiaadE hadaWgaaWcbaGaamyAaaqabaGccaWG4bWaaSbaaSqaaiaadMgaaeqa aaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aaGcba WaaabCaeaacaWG3bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH 9aqpcaaIXaaabaGaamOBaaqdcqGHris5aaaaaOqaaiabg2da9maala aabaWaaabCaeaadaqadaqaaiaaigdaaiaawIcacaGLPaaacaWG4bWa aSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaam OBaaqdcqGHris5aaGcbaWaaabCaeaadaqadaqaaiaaigdaaiaawIca caGLPaaaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHri s5aaaaaOqaaiabg2da9maalaaabaWaaabCaeaacaWG4bWaaSbaaSqa aiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcq GHris5aaGcbaGaamOBaaaaaeaacqGH9aqpceWG4bGbaebaaaaa@7185@

 


 

Similarly, the online weighted mean with weights of the same constant value c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaaaa@36DF@  would be:

 

x ¯ n weighted = x ¯ n1 weighted w n ( x ¯ n1 weighted x n ) i=1 n w i = x ¯ n1 weighted c( x ¯ n1 weighted x n ) i=1 n c = x ¯ n1 weighted c( x ¯ n1 weighted x n ) c( i=1 n 1 ) = x ¯ n1 weighted c ( x ¯ n1 weighted x n ) c ( n ) = x ¯ n1 weighted ( x ¯ n1 weighted x n ) n = x ¯ n1 ( x ¯ n1 x n ) n = x ¯ n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaaceWG4b GbaebadaqhaaWcbaGaamOBaaqaaiaabEhacaqGLbGaaeyAaiaabEga caqGObGaaeiDaiaabwgacaqGKbaaaOGaeyypa0JabmiEayaaraWaa0 baaSqaaiaad6gacqGHsislcaaIXaaabaGaae4DaiaabwgacaqGPbGa ae4zaiaabIgacaqG0bGaaeyzaiaabsgaaaGccqGHsisldaWcaaqaai aadEhadaWgaaWcbaGaamOBaaqabaGcdaqadaqaaiqadIhagaqeamaa DaaaleaacaWGUbGaeyOeI0IaaGymaaqaaiaabEhacaqGLbGaaeyAai aabEgacaqGObGaaeiDaiaabwgacaqGKbaaaOGaeyOeI0IaamiEamaa BaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaaqaamaaqahabaGaam 4DamaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaeyypa0JaaGymaaqa aiaad6gaa0GaeyyeIuoaaaaakeaacqGH9aqpceWG4bGbaebadaqhaa WcbaGaamOBaiabgkHiTiaaigdaaeaacaqG3bGaaeyzaiaabMgacaqG NbGaaeiAaiaabshacaqGLbGaaeizaaaakiabgkHiTmaalaaabaGaam 4yamaabmaabaGabmiEayaaraWaa0baaSqaaiaad6gacqGHsislcaaI XaaabaGaae4DaiaabwgacaqGPbGaae4zaiaabIgacaqG0bGaaeyzai aabsgaaaGccqGHsislcaWG4bWaaSbaaSqaaiaad6gaaeqaaaGccaGL OaGaayzkaaaabaWaaabCaeaacaWGJbaaleaacaWGPbGaeyypa0JaaG ymaaqaaiaad6gaa0GaeyyeIuoaaaaakeaacqGH9aqpceWG4bGbaeba daqhaaWcbaGaamOBaiabgkHiTiaaigdaaeaacaqG3bGaaeyzaiaabM gacaqGNbGaaeiAaiaabshacaqGLbGaaeizaaaakiabgkHiTmaalaaa baGaam4yamaabmaabaGabmiEayaaraWaa0baaSqaaiaad6gacqGHsi slcaaIXaaabaGaae4DaiaabwgacaqGPbGaae4zaiaabIgacaqG0bGa aeyzaiaabsgaaaGccqGHsislcaWG4bWaaSbaaSqaaiaad6gaaeqaaa GccaGLOaGaayzkaaaabaGaam4yamaabmaabaWaaabCaeaacaaIXaaa leaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaOGaay jkaiaawMcaaaaaaeaacqGH9aqpceWG4bGbaebadaqhaaWcbaGaamOB aiabgkHiTiaaigdaaeaacaqG3bGaaeyzaiaabMgacaqGNbGaaeiAai aabshacaqGLbGaaeizaaaakiabgkHiTmaalaaabaWaaqIaaeaacaWG JbaaamaabmaabaGabmiEayaaraWaa0baaSqaaiaad6gacqGHsislca aIXaaabaGaae4DaiaabwgacaqGPbGaae4zaiaabIgacaqG0bGaaeyz aiaabsgaaaGccqGHsislcaWG4bWaaSbaaSqaaiaad6gaaeqaaaGcca GLOaGaayzkaaaabaWaaqIaaeaacaWGJbaaamaabmaabaGaamOBaaGa ayjkaiaawMcaaaaaaeaacqGH9aqpceWG4bGbaebadaqhaaWcbaGaam OBaiabgkHiTiaaigdaaeaacaqG3bGaaeyzaiaabMgacaqGNbGaaeiA aiaabshacaqGLbGaaeizaaaakiabgkHiTmaalaaabaWaaeWaaeaace WG4bGbaebadaqhaaWcbaGaamOBaiabgkHiTiaaigdaaeaacaqG3bGa aeyzaiaabMgacaqGNbGaaeiAaiaabshacaqGLbGaaeizaaaakiabgk HiTiaadIhadaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaaaeaa caWGUbaaaaqaaiabg2da9iqadIhagaqeamaaBaaaleaacaWGUbGaey OeI0IaaGymaaqabaGccqGHsisldaWcaaqaamaabmaabaGabmiEayaa raWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiabgkHiTiaadI hadaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaaaeaacaWGUbaa aaqaaiabg2da9iqadIhagaqeamaaBaaaleaacaWGUbaabeaaaaaa@05F2@

Therefore, if all the weights are the same constant value c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaaaa@36DF@ , the online weighted mean is the same as the online mean.

 

 

 

 


 

Example of C++ code that computes the online weighted mean:

 

#include <iostream>

#include <iomanip>

 

int main () {

      

    double x;

    double weight;

    double sum_of_weights = 0;

    double weighted_mean = 0;

    double prev_weighted_mean;

 

    if ( std::cin >> x && std::cin >> weight ) {

        sum_of_weights += weight;

        weighted_mean = x;

        while ( std::cin >> x && std::cin >> weight ) {

            prev_weighted_mean = weighted_mean;

            sum_of_weights += weight;

            weighted_mean = (

                prev_weighted_mean - weight * ( prev_weighted_mean - x ) / sum_of_weights

            );

        }

    }

 

    std::cout << "sum_of_weights: " << std::setprecision( 17 ) << sum_of_weights << '\n';

    std::cout << "weighted_mean:  " << std::setprecision( 17 ) << weighted_mean  << '\n';

}

 

 

Example of data.txt:

 

-19.313117172629575    2.718281828459045

-34.14656787734913     7.38905609893065

-14.117521595690334    20.085536923187668

.                      .

.                      .

.                      .

 

 

Command line:

 

g++ -o main.exe main.cpp -std=c++11 -march=native -O3 -Wall -Wextra -Werror -static

./main.exe < data.txt

 

 

Sample Output:

 

sum_of_weights: 34843.773845331321

weighted_mean:  -28.368899576339764