Online Variance
by Joshua Burkholder
online_variance.pdf
online_variance.docx

Let n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EA@ be the number of values, v n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGUbaabeaaaaa@3811@ be the biased sample variance of the first n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EA@ values, v n1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGUbGaeyOeI0IaaGymaaqabaaaaa@39B9@ be the biased sample variance for the first n1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgk HiTiaaigdaaaa@3892@ values, x n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGUbaabeaaaaa@3813@ be the n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EA@ -th value, x ¯ n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaara WaaSbaaSqaaiaad6gaaeqaaaaa@382B@ be the sample mean of the first n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EA@ values, and x ¯ n1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaara WaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaaaaa@39D3@ be the sample mean of the first n1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgk HiTiaaigdaaaa@3892@ values. Then, the recurrence equation for the biased sample variance (a.k.a. online variance) is:

v n = v n1 v n1 ( x n x ¯ n )( x n x ¯ n1 ) n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGUbaabeaakiabg2da9iaadAhadaWgaaWcbaGaamOBaiab gkHiTiaaigdaaeqaaOGaeyOeI0YaaSaaaeaacaWG2bWaaSbaaSqaai aad6gacqGHsislcaaIXaaabeaakiabgkHiTmaabmaabaGaamiEamaa BaaaleaacaWGUbaabeaakiabgkHiTiqadIhagaqeamaaBaaaleaaca WGUbaabeaaaOGaayjkaiaawMcaamaabmaabaGaamiEamaaBaaaleaa caWGUbaabeaakiabgkHiTiqadIhagaqeamaaBaaaleaacaWGUbGaey OeI0IaaGymaaqabaaakiaawIcacaGLPaaaaeaacaWGUbaaaaaa@52F2@

 

Proof:

The definition of the biased sample variance of the first n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EA@ values is defined as:

v n = i=1 n ( x i x ¯ n ) 2 n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGUbaabeaakiabg2da9maalaaabaWaaabCaeaadaqadaqa aiaadIhadaWgaaWcbaGaamyAaaqabaGccqGHsislceWG4bGbaebada WgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaa ikdaaaaabaGaamyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLd aakeaacaWGUbaaaaaa@47C5@

If we expand this definition, we have:

v n = i=1 n ( x i 2 2 x i x ¯ n + x ¯ n 2 ) n v n = i=1 n1 ( x i 2 2 x i x ¯ n + x ¯ n 2 ) + x n 2 2 x n x ¯ n + x ¯ n 2 n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaacaWG2b WaaSbaaSqaaiaad6gaaeqaaOGaeyypa0ZaaSaaaeaadaaeWbqaamaa bmaabaGaamiEamaaDaaaleaacaWGPbaabaGaaGOmaaaakiabgkHiTi aaikdacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGabmiEayaaraWaaSba aSqaaiaad6gaaeqaaOGaey4kaSIabmiEayaaraWaa0baaSqaaiaad6 gaaeaacaaIYaaaaaGccaGLOaGaayzkaaaaleaacaWGPbGaeyypa0Ja aGymaaqaaiaad6gaa0GaeyyeIuoaaOqaaiaad6gaaaaabaGaamODam aaBaaaleaacaWGUbaabeaakiabg2da9maalaaabaWaaabCaeaadaqa daqaaiaadIhadaqhaaWcbaGaamyAaaqaaiaaikdaaaGccqGHsislca aIYaGaamiEamaaBaaaleaacaWGPbaabeaakiqadIhagaqeamaaBaaa leaacaWGUbaabeaakiabgUcaRiqadIhagaqeamaaDaaaleaacaWGUb aabaGaaGOmaaaaaOGaayjkaiaawMcaaaWcbaGaamyAaiabg2da9iaa igdaaeaacaWGUbGaeyOeI0IaaGymaaqdcqGHris5aOGaey4kaSIaam iEamaaDaaaleaacaWGUbaabaGaaGOmaaaakiabgkHiTiaaikdacaWG 4bWaaSbaaSqaaiaad6gaaeqaaOGabmiEayaaraWaaSbaaSqaaiaad6 gaaeqaaOGaey4kaSIabmiEayaaraWaa0baaSqaaiaad6gaaeaacaaI YaaaaaGcbaGaamOBaaaaaaaa@7626@

Since the recurrence equation for the sample mean is:

x ¯ n = x ¯ n1 x ¯ n1 x n n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaara WaaSbaaSqaaiaad6gaaeqaaOGaeyypa0JabmiEayaaraWaaSbaaSqa aiaad6gacqGHsislcaaIXaaabeaakiabgkHiTmaalaaabaGabmiEay aaraWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiabgkHiTiaa dIhadaWgaaWcbaGaamOBaaqabaaakeaacaWGUbaaaaaa@460A@ ,

then we also have:

x ¯ n 2 = ( x ¯ n1 x ¯ n1 x n n ) 2 x ¯ n 2 = x ¯ n1 2 2 x ¯ n1 ( x ¯ n1 x n n )+ ( x ¯ n1 x n n ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaaceWG4b GbaebadaqhaaWcbaGaamOBaaqaaiaaikdaaaGccqGH9aqpdaqadaqa aiqadIhagaqeamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccq GHsisldaWcaaqaaiqadIhagaqeamaaBaaaleaacaWGUbGaeyOeI0Ia aGymaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaad6gaaeqaaaGcba GaamOBaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakeaa ceWG4bGbaebadaqhaaWcbaGaamOBaaqaaiaaikdaaaGccqGH9aqpce WG4bGbaebadaqhaaWcbaGaamOBaiabgkHiTiaaigdaaeaacaaIYaaa aOGaeyOeI0IaaGOmaiqadIhagaqeamaaBaaaleaacaWGUbGaeyOeI0 IaaGymaaqabaGcdaqadaqaamaalaaabaGabmiEayaaraWaaSbaaSqa aiaad6gacqGHsislcaaIXaaabeaakiabgkHiTiaadIhadaWgaaWcba GaamOBaaqabaaakeaacaWGUbaaaaGaayjkaiaawMcaaiabgUcaRmaa bmaabaWaaSaaaeaaceWG4bGbaebadaWgaaWcbaGaamOBaiabgkHiTi aaigdaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaWGUbaabeaaaOqa aiaad6gaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaaaa@6C55@

With these, we have:

v n = i=1 n1 ( x i 2 2 x i ( x ¯ n1 x ¯ n1 x n n )+( x ¯ n1 2 2 x ¯ n1 ( x ¯ n1 x n n )+ ( x ¯ n1 x n n ) 2 ) ) + x n 2 2 x n x ¯ n + x ¯ n 2 n v n = i=1 n1 ( x i 2 2 x i x ¯ n1 +2 x i ( x ¯ n1 x n n )+ x ¯ n1 2 2 x ¯ n1 ( x ¯ n1 x n n )+ ( x ¯ n1 x n n ) 2 ) + x n 2 2 x n x ¯ n + x ¯ n 2 n v n = i=1 n1 ( x i 2 2 x i x ¯ n1 + x ¯ n1 2 +2 x i ( x ¯ n1 x n n )2 x ¯ n1 ( x ¯ n1 x n n )+ ( x ¯ n1 x n n ) 2 ) + x n 2 2 x n x ¯ n + x ¯ n 2 n v n = i=1 n1 ( ( x i x ¯ n1 ) 2 +2 x i ( x ¯ n1 x n n )2 x ¯ n1 ( x ¯ n1 x n n )+ ( x ¯ n1 x n n ) 2 ) + x n 2 2 x n x ¯ n + x ¯ n 2 n v n = i=1 n1 ( x i x ¯ n1 ) 2 + i=1 n1 ( 2 x i ( x ¯ n1 x n n )2 x ¯ n1 ( x ¯ n1 x n n )+ ( x ¯ n1 x n n ) 2 ) + x n 2 2 x n x ¯ n + x ¯ n 2 n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaacaWG2b WaaSbaaSqaaiaad6gaaeqaaOGaeyypa0ZaaSaaaeaadaaeWbqaamaa bmaabaGaamiEamaaDaaaleaacaWGPbaabaGaaGOmaaaakiabgkHiTi aaikdacaWG4bWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaaceWG4bGb aebadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaeyOeI0YaaS aaaeaaceWG4bGbaebadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqa aOGaeyOeI0IaamiEamaaBaaaleaacaWGUbaabeaaaOqaaiaad6gaaa aacaGLOaGaayzkaaGaey4kaSYaaeWaaeaaceWG4bGbaebadaqhaaWc baGaamOBaiabgkHiTiaaigdaaeaacaaIYaaaaOGaeyOeI0IaaGOmai qadIhagaqeamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGcdaqa daqaamaalaaabaGabmiEayaaraWaaSbaaSqaaiaad6gacqGHsislca aIXaaabeaakiabgkHiTiaadIhadaWgaaWcbaGaamOBaaqabaaakeaa caWGUbaaaaGaayjkaiaawMcaaiabgUcaRmaabmaabaWaaSaaaeaace WG4bGbaebadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaeyOe I0IaamiEamaaBaaaleaacaWGUbaabeaaaOqaaiaad6gaaaaacaGLOa GaayzkaaWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaaacaGL OaGaayzkaaaaleaacaWGPbGaeyypa0JaaGymaaqaaiaad6gacqGHsi slcaaIXaaaniabggHiLdGccqGHRaWkcaWG4bWaa0baaSqaaiaad6ga aeaacaaIYaaaaOGaeyOeI0IaaGOmaiaadIhadaWgaaWcbaGaamOBaa qabaGcceWG4bGbaebadaWgaaWcbaGaamOBaaqabaGccqGHRaWkceWG 4bGbaebadaqhaaWcbaGaamOBaaqaaiaaikdaaaaakeaacaWGUbaaaa qaaiaadAhadaWgaaWcbaGaamOBaaqabaGccqGH9aqpdaWcaaqaamaa qahabaWaaeWaaeaacaWG4bWaa0baaSqaaiaadMgaaeaacaaIYaaaaO GaeyOeI0IaaGOmaiaadIhadaWgaaWcbaGaamyAaaqabaGcceWG4bGb aebadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaey4kaSIaaG OmaiaadIhadaWgaaWcbaGaamyAaaqabaGcdaqadaqaamaalaaabaGa bmiEayaaraWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiabgk HiTiaadIhadaWgaaWcbaGaamOBaaqabaaakeaacaWGUbaaaaGaayjk aiaawMcaaiabgUcaRiqadIhagaqeamaaDaaaleaacaWGUbGaeyOeI0 IaaGymaaqaaiaaikdaaaGccqGHsislcaaIYaGabmiEayaaraWaaSba aSqaaiaad6gacqGHsislcaaIXaaabeaakmaabmaabaWaaSaaaeaace WG4bGbaebadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaeyOe I0IaamiEamaaBaaaleaacaWGUbaabeaaaOqaaiaad6gaaaaacaGLOa GaayzkaaGaey4kaSYaaeWaaeaadaWcaaqaaiqadIhagaqeamaaBaaa leaacaWGUbGaeyOeI0IaaGymaaqabaGccqGHsislcaWG4bWaaSbaaS qaaiaad6gaaeqaaaGcbaGaamOBaaaaaiaawIcacaGLPaaadaahaaWc beqaaiaaikdaaaaakiaawIcacaGLPaaaaSqaaiaadMgacqGH9aqpca aIXaaabaGaamOBaiabgkHiTiaaigdaa0GaeyyeIuoakiabgUcaRiaa dIhadaqhaaWcbaGaamOBaaqaaiaaikdaaaGccqGHsislcaaIYaGaam iEamaaBaaaleaacaWGUbaabeaakiqadIhagaqeamaaBaaaleaacaWG UbaabeaakiabgUcaRiqadIhagaqeamaaDaaaleaacaWGUbaabaGaaG OmaaaaaOqaaiaad6gaaaaabaGaamODamaaBaaaleaacaWGUbaabeaa kiabg2da9maalaaabaWaaabCaeaadaqadaqaaiaadIhadaqhaaWcba GaamyAaaqaaiaaikdaaaGccqGHsislcaaIYaGaamiEamaaBaaaleaa caWGPbaabeaakiqadIhagaqeamaaBaaaleaacaWGUbGaeyOeI0IaaG ymaaqabaGccqGHRaWkceWG4bGbaebadaqhaaWcbaGaamOBaiabgkHi TiaaigdaaeaacaaIYaaaaOGaey4kaSIaaGOmaiaadIhadaWgaaWcba GaamyAaaqabaGcdaqadaqaamaalaaabaGabmiEayaaraWaaSbaaSqa aiaad6gacqGHsislcaaIXaaabeaakiabgkHiTiaadIhadaWgaaWcba GaamOBaaqabaaakeaacaWGUbaaaaGaayjkaiaawMcaaiabgkHiTiaa ikdaceWG4bGbaebadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaO WaaeWaaeaadaWcaaqaaiqadIhagaqeamaaBaaaleaacaWGUbGaeyOe I0IaaGymaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaad6gaaeqaaa GcbaGaamOBaaaaaiaawIcacaGLPaaacqGHRaWkdaqadaqaamaalaaa baGabmiEayaaraWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaaki abgkHiTiaadIhadaWgaaWcbaGaamOBaaqabaaakeaacaWGUbaaaaGa ayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaa WcbaGaamyAaiabg2da9iaaigdaaeaacaWGUbGaeyOeI0IaaGymaaqd cqGHris5aOGaey4kaSIaamiEamaaDaaaleaacaWGUbaabaGaaGOmaa aakiabgkHiTiaaikdacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGabmiE ayaaraWaaSbaaSqaaiaad6gaaeqaaOGaey4kaSIabmiEayaaraWaa0 baaSqaaiaad6gaaeaacaaIYaaaaaGcbaGaamOBaaaaaeaacaWG2bWa aSbaaSqaaiaad6gaaeqaaOGaeyypa0ZaaSaaaeaadaaeWbqaamaabm aabaWaaeWaaeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0Ia bmiEayaaraWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaaaOGaay jkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacaWG 4bWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaadaWcaaqaaiqadIhaga qeamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccqGHsislcaWG 4bWaaSbaaSqaaiaad6gaaeqaaaGcbaGaamOBaaaaaiaawIcacaGLPa aacqGHsislcaaIYaGabmiEayaaraWaaSbaaSqaaiaad6gacqGHsisl caaIXaaabeaakmaabmaabaWaaSaaaeaaceWG4bGbaebadaWgaaWcba GaamOBaiabgkHiTiaaigdaaeqaaOGaeyOeI0IaamiEamaaBaaaleaa caWGUbaabeaaaOqaaiaad6gaaaaacaGLOaGaayzkaaGaey4kaSYaae WaaeaadaWcaaqaaiqadIhagaqeamaaBaaaleaacaWGUbGaeyOeI0Ia aGymaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaad6gaaeqaaaGcba GaamOBaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakiaa wIcacaGLPaaaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaiabgk HiTiaaigdaa0GaeyyeIuoakiabgUcaRiaadIhadaqhaaWcbaGaamOB aaqaaiaaikdaaaGccqGHsislcaaIYaGaamiEamaaBaaaleaacaWGUb aabeaakiqadIhagaqeamaaBaaaleaacaWGUbaabeaakiabgUcaRiqa dIhagaqeamaaDaaaleaacaWGUbaabaGaaGOmaaaaaOqaaiaad6gaaa aabaGaamODamaaBaaaleaacaWGUbaabeaakiabg2da9maalaaabaWa aabCaeaadaqadaqaaiaadIhadaWgaaWcbaGaamyAaaqabaGccqGHsi slceWG4bGbaebadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaaGc caGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaqaaiaadMgacqGH9a qpcaaIXaaabaGaamOBaiabgkHiTiaaigdaa0GaeyyeIuoakiabgUca RmaaqahabaWaaeWaaeaacaaIYaGaamiEamaaBaaaleaacaWGPbaabe aakmaabmaabaWaaSaaaeaaceWG4bGbaebadaWgaaWcbaGaamOBaiab gkHiTiaaigdaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaWGUbaabe aaaOqaaiaad6gaaaaacaGLOaGaayzkaaGaeyOeI0IaaGOmaiqadIha gaqeamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGcdaqadaqaam aalaaabaGabmiEayaaraWaaSbaaSqaaiaad6gacqGHsislcaaIXaaa beaakiabgkHiTiaadIhadaWgaaWcbaGaamOBaaqabaaakeaacaWGUb aaaaGaayjkaiaawMcaaiabgUcaRmaabmaabaWaaSaaaeaaceWG4bGb aebadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaeyOeI0Iaam iEamaaBaaaleaacaWGUbaabeaaaOqaaiaad6gaaaaacaGLOaGaayzk aaWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaaaleaacaWGPb Gaeyypa0JaaGymaaqaaiaad6gacqGHsislcaaIXaaaniabggHiLdGc cqGHRaWkcaWG4bWaa0baaSqaaiaad6gaaeaacaaIYaaaaOGaeyOeI0 IaaGOmaiaadIhadaWgaaWcbaGaamOBaaqabaGcceWG4bGbaebadaWg aaWcbaGaamOBaaqabaGccqGHRaWkceWG4bGbaebadaqhaaWcbaGaam OBaaqaaiaaikdaaaaakeaacaWGUbaaaaaaaa@CCB6@

Since the biased sample variance for the first n1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgk HiTiaaigdaaaa@3892@ values is:

v n1 = i=1 n1 ( x i x ¯ n1 ) 2 n1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGUbGaeyOeI0IaaGymaaqabaGccqGH9aqpdaWcaaqaamaa qahabaWaaeWaaeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0 IabmiEayaaraWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaaaOGa ayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaeaacaWGPbGaeyypa0 JaaGymaaqaaiaad6gacqGHsislcaaIXaaaniabggHiLdaakeaacaWG UbGaeyOeI0IaaGymaaaaaaa@4E65@ ,

then we also have:

i=1 n1 ( x i x ¯ n1 ) 2 =( n1 ) v n1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaada qadaqaaiaadIhadaWgaaWcbaGaamyAaaqabaGccqGHsislceWG4bGb aebadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaaGccaGLOaGaay zkaaWaaWbaaSqabeaacaaIYaaaaaqaaiaadMgacqGH9aqpcaaIXaaa baGaamOBaiabgkHiTiaaigdaa0GaeyyeIuoakiabg2da9maabmaaba GaamOBaiabgkHiTiaaigdaaiaawIcacaGLPaaacaWG2bWaaSbaaSqa aiaad6gacqGHsislcaaIXaaabeaaaaa@4FD4@ .

With this, we have:

v n = ( n1 ) v n1 + i=1 n1 ( 2 x i ( x ¯ n1 x n n )2 x ¯ n1 ( x ¯ n1 x n n )+ ( x ¯ n1 x n n ) 2 ) + x n 2 2 x n x ¯ n + x ¯ n 2 n v n = ( n1 ) v n1 +( x ¯ n1 x n n )( i=1 n1 ( 2 x i 2 x ¯ n1 +( x ¯ n1 x n n ) ) )+ x n 2 2 x n x ¯ n + x ¯ n 2 n v n = ( n1 ) v n1 +( x ¯ n1 x n n )( i=1 n1 ( 2 x i ) + i=1 n1 ( 2 x ¯ n1 ) + i=1 n1 ( x ¯ n1 x n n ) )+ x n 2 2 x n x ¯ n + x ¯ n 2 n v n = ( n1 ) v n1 +( x ¯ n1 x n n )( 2 i=1 n1 ( x i ) 2 x ¯ n1 i=1 n1 ( 1 ) +( x ¯ n1 x n n ) i=1 n1 ( 1 ) )+ x n 2 2 x n x ¯ n + x ¯ n 2 n v n = ( n1 ) v n1 +( x ¯ n1 x n n )( 2 i=1 n1 ( x i ) 2 x ¯ n1 ( n1 )+( x ¯ n1 x n n )( n1 ) )+ x n 2 2 x n x ¯ n + x ¯ n 2 n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaacaWG2b WaaSbaaSqaaiaad6gaaeqaaOGaeyypa0ZaaSaaaeaadaqadaqaaiaa d6gacqGHsislcaaIXaaacaGLOaGaayzkaaGaamODamaaBaaaleaaca WGUbGaeyOeI0IaaGymaaqabaGccqGHRaWkdaaeWbqaamaabmaabaGa aGOmaiaadIhadaWgaaWcbaGaamyAaaqabaGcdaqadaqaamaalaaaba GabmiEayaaraWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiab gkHiTiaadIhadaWgaaWcbaGaamOBaaqabaaakeaacaWGUbaaaaGaay jkaiaawMcaaiabgkHiTiaaikdaceWG4bGbaebadaWgaaWcbaGaamOB aiabgkHiTiaaigdaaeqaaOWaaeWaaeaadaWcaaqaaiqadIhagaqeam aaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccqGHsislcaWG4bWa aSbaaSqaaiaad6gaaeqaaaGcbaGaamOBaaaaaiaawIcacaGLPaaacq GHRaWkdaqadaqaamaalaaabaGabmiEayaaraWaaSbaaSqaaiaad6ga cqGHsislcaaIXaaabeaakiabgkHiTiaadIhadaWgaaWcbaGaamOBaa qabaaakeaacaWGUbaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOm aaaaaOGaayjkaiaawMcaaaWcbaGaamyAaiabg2da9iaaigdaaeaaca WGUbGaeyOeI0IaaGymaaqdcqGHris5aOGaey4kaSIaamiEamaaDaaa leaacaWGUbaabaGaaGOmaaaakiabgkHiTiaaikdacaWG4bWaaSbaaS qaaiaad6gaaeqaaOGabmiEayaaraWaaSbaaSqaaiaad6gaaeqaaOGa ey4kaSIabmiEayaaraWaa0baaSqaaiaad6gaaeaacaaIYaaaaaGcba GaamOBaaaaaeaacaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaeyypa0Za aSaaaeaadaqadaqaaiaad6gacqGHsislcaaIXaaacaGLOaGaayzkaa GaamODamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccqGHRaWk daqadaqaamaalaaabaGabmiEayaaraWaaSbaaSqaaiaad6gacqGHsi slcaaIXaaabeaakiabgkHiTiaadIhadaWgaaWcbaGaamOBaaqabaaa keaacaWGUbaaaaGaayjkaiaawMcaamaabmaabaWaaabCaeaadaqada qaaiaaikdacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaaGOm aiqadIhagaqeamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccq GHRaWkdaqadaqaamaalaaabaGabmiEayaaraWaaSbaaSqaaiaad6ga cqGHsislcaaIXaaabeaakiabgkHiTiaadIhadaWgaaWcbaGaamOBaa qabaaakeaacaWGUbaaaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaWc baGaamyAaiabg2da9iaaigdaaeaacaWGUbGaeyOeI0IaaGymaaqdcq GHris5aaGccaGLOaGaayzkaaGaey4kaSIaamiEamaaDaaaleaacaWG UbaabaGaaGOmaaaakiabgkHiTiaaikdacaWG4bWaaSbaaSqaaiaad6 gaaeqaaOGabmiEayaaraWaaSbaaSqaaiaad6gaaeqaaOGaey4kaSIa bmiEayaaraWaa0baaSqaaiaad6gaaeaacaaIYaaaaaGcbaGaamOBaa aaaeaacaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaeyypa0ZaaSaaaeaa daqadaqaaiaad6gacqGHsislcaaIXaaacaGLOaGaayzkaaGaamODam aaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccqGHRaWkdaqadaqa amaalaaabaGabmiEayaaraWaaSbaaSqaaiaad6gacqGHsislcaaIXa aabeaakiabgkHiTiaadIhadaWgaaWcbaGaamOBaaqabaaakeaacaWG UbaaaaGaayjkaiaawMcaamaabmaabaWaaabCaeaadaqadaqaaiaaik dacaWG4bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaleaa caWGPbGaeyypa0JaaGymaaqaaiaad6gacqGHsislcaaIXaaaniabgg HiLdGccqGHRaWkdaaeWbqaamaabmaabaGaeyOeI0IaaGOmaiqadIha gaqeamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaaakiaawIcaca GLPaaaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaiabgkHiTiaa igdaa0GaeyyeIuoakiabgUcaRmaaqahabaWaaeWaaeaadaWcaaqaai qadIhagaqeamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccqGH sislcaWG4bWaaSbaaSqaaiaad6gaaeqaaaGcbaGaamOBaaaaaiaawI cacaGLPaaaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaiabgkHi Tiaaigdaa0GaeyyeIuoaaOGaayjkaiaawMcaaiabgUcaRiaadIhada qhaaWcbaGaamOBaaqaaiaaikdaaaGccqGHsislcaaIYaGaamiEamaa BaaaleaacaWGUbaabeaakiqadIhagaqeamaaBaaaleaacaWGUbaabe aakiabgUcaRiqadIhagaqeamaaDaaaleaacaWGUbaabaGaaGOmaaaa aOqaaiaad6gaaaaabaGaamODamaaBaaaleaacaWGUbaabeaakiabg2 da9maalaaabaWaaeWaaeaacaWGUbGaeyOeI0IaaGymaaGaayjkaiaa wMcaaiaadAhadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaey 4kaSYaaeWaaeaadaWcaaqaaiqadIhagaqeamaaBaaaleaacaWGUbGa eyOeI0IaaGymaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaad6gaae qaaaGcbaGaamOBaaaaaiaawIcacaGLPaaadaqadaqaaiaaikdadaae WbqaamaabmaabaGaamiEamaaBaaaleaacaWGPbaabeaaaOGaayjkai aawMcaaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGUbGaeyOeI0Ia aGymaaqdcqGHris5aOGaeyOeI0IaaGOmaiqadIhagaqeamaaBaaale aacaWGUbGaeyOeI0IaaGymaaqabaGcdaaeWbqaamaabmaabaGaaGym aaGaayjkaiaawMcaaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGUb GaeyOeI0IaaGymaaqdcqGHris5aOGaey4kaSYaaeWaaeaadaWcaaqa aiqadIhagaqeamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccq GHsislcaWG4bWaaSbaaSqaaiaad6gaaeqaaaGcbaGaamOBaaaaaiaa wIcacaGLPaaadaaeWbqaamaabmaabaGaaGymaaGaayjkaiaawMcaaa WcbaGaamyAaiabg2da9iaaigdaaeaacaWGUbGaeyOeI0IaaGymaaqd cqGHris5aaGccaGLOaGaayzkaaGaey4kaSIaamiEamaaDaaaleaaca WGUbaabaGaaGOmaaaakiabgkHiTiaaikdacaWG4bWaaSbaaSqaaiaa d6gaaeqaaOGabmiEayaaraWaaSbaaSqaaiaad6gaaeqaaOGaey4kaS IabmiEayaaraWaa0baaSqaaiaad6gaaeaacaaIYaaaaaGcbaGaamOB aaaaaeaacaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaeyypa0ZaaSaaae aadaqadaqaaiaad6gacqGHsislcaaIXaaacaGLOaGaayzkaaGaamOD amaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccqGHRaWkdaqada qaamaalaaabaGabmiEayaaraWaaSbaaSqaaiaad6gacqGHsislcaaI XaaabeaakiabgkHiTiaadIhadaWgaaWcbaGaamOBaaqabaaakeaaca WGUbaaaaGaayjkaiaawMcaamaabmaabaGaaGOmamaaqahabaWaaeWa aeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaale aacaWGPbGaeyypa0JaaGymaaqaaiaad6gacqGHsislcaaIXaaaniab ggHiLdGccqGHsislcaaIYaGabmiEayaaraWaaSbaaSqaaiaad6gacq GHsislcaaIXaaabeaakmaabmaabaGaamOBaiabgkHiTiaaigdaaiaa wIcacaGLPaaacqGHRaWkdaqadaqaamaalaaabaGabmiEayaaraWaaS baaSqaaiaad6gacqGHsislcaaIXaaabeaakiabgkHiTiaadIhadaWg aaWcbaGaamOBaaqabaaakeaacaWGUbaaaaGaayjkaiaawMcaamaabm aabaGaamOBaiabgkHiTiaaigdaaiaawIcacaGLPaaaaiaawIcacaGL PaaacqGHRaWkcaWG4bWaa0baaSqaaiaad6gaaeaacaaIYaaaaOGaey OeI0IaaGOmaiaadIhadaWgaaWcbaGaamOBaaqabaGcceWG4bGbaeba daWgaaWcbaGaamOBaaqabaGccqGHRaWkceWG4bGbaebadaqhaaWcba GaamOBaaqaaiaaikdaaaaakeaacaWGUbaaaaaaaa@B4EC@

Since the definition of the sample mean for the first n1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgk HiTiaaigdaaaa@3892@ values is:

x ¯ n1 = i=1 n1 x i n1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaara WaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiabg2da9maalaaa baWaaabCaeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacq GH9aqpcaaIXaaabaGaamOBaiabgkHiTiaaigdaa0GaeyyeIuoaaOqa aiaad6gacqGHsislcaaIXaaaaaaa@4730@ ,

then we also have:

i=1 n1 x i =( n1 ) x ¯ n1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaaca WG4bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaa baGaamOBaiabgkHiTiaaigdaa0GaeyyeIuoakiabg2da9maabmaaba GaamOBaiabgkHiTiaaigdaaiaawIcacaGLPaaaceWG4bGbaebadaWg aaWcbaGaamOBaiabgkHiTiaaigdaaeqaaaaa@489E@ .

With this, we have:

v n = ( n1 ) v n1 +( x ¯ n1 x n n )( 2( n1 ) x ¯ n1 2 x ¯ n1 ( n1 )+( x ¯ n1 x n n )( n1 ) )+ x n 2 2 x n x ¯ n + x ¯ n 2 n v n = ( n1 ) v n1 +( x ¯ n1 x n n )( 2( n1 ) x ¯ n1 2( n1 ) x ¯ n1 +( x ¯ n1 x n n )( n1 ) )+ x n 2 2 x n x ¯ n + x ¯ n 2 n v n = ( n1 ) v n1 +( x ¯ n1 x n n )( x ¯ n1 x n n )( n1 )+ x n 2 2 x n x ¯ n + x ¯ n 2 n v n = ( n1 ) v n1 + x n 2 +( n1 )( x ¯ n1 2 2 x n x ¯ n1 + x n 2 n 2 )2 x n x ¯ n + x ¯ n 2 n v n = ( n1 ) v n1 + x n 2 + ( n1 ) x ¯ n1 2 n 2 2( n1 ) x n x ¯ n1 n 2 + ( n1 ) x n 2 n 2 2 x n x ¯ n + x ¯ n 2 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaacaWG2b WaaSbaaSqaaiaad6gaaeqaaOGaeyypa0ZaaSaaaeaadaqadaqaaiaa d6gacqGHsislcaaIXaaacaGLOaGaayzkaaGaamODamaaBaaaleaaca WGUbGaeyOeI0IaaGymaaqabaGccqGHRaWkdaqadaqaamaalaaabaGa bmiEayaaraWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiabgk HiTiaadIhadaWgaaWcbaGaamOBaaqabaaakeaacaWGUbaaaaGaayjk aiaawMcaamaabmaabaGaaGOmamaabmaabaGaamOBaiabgkHiTiaaig daaiaawIcacaGLPaaaceWG4bGbaebadaWgaaWcbaGaamOBaiabgkHi TiaaigdaaeqaaOGaeyOeI0IaaGOmaiqadIhagaqeamaaBaaaleaaca WGUbGaeyOeI0IaaGymaaqabaGcdaqadaqaaiaad6gacqGHsislcaaI XaaacaGLOaGaayzkaaGaey4kaSYaaeWaaeaadaWcaaqaaiqadIhaga qeamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccqGHsislcaWG 4bWaaSbaaSqaaiaad6gaaeqaaaGcbaGaamOBaaaaaiaawIcacaGLPa aadaqadaqaaiaad6gacqGHsislcaaIXaaacaGLOaGaayzkaaaacaGL OaGaayzkaaGaey4kaSIaamiEamaaDaaaleaacaWGUbaabaGaaGOmaa aakiabgkHiTiaaikdacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGabmiE ayaaraWaaSbaaSqaaiaad6gaaeqaaOGaey4kaSIabmiEayaaraWaa0 baaSqaaiaad6gaaeaacaaIYaaaaaGcbaGaamOBaaaaaeaacaWG2bWa aSbaaSqaaiaad6gaaeqaaOGaeyypa0ZaaSaaaeaadaqadaqaaiaad6 gacqGHsislcaaIXaaacaGLOaGaayzkaaGaamODamaaBaaaleaacaWG UbGaeyOeI0IaaGymaaqabaGccqGHRaWkdaqadaqaamaalaaabaGabm iEayaaraWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiabgkHi TiaadIhadaWgaaWcbaGaamOBaaqabaaakeaacaWGUbaaaaGaayjkai aawMcaamaabmaabaWaaqIaaeaacaaIYaWaaeWaaeaacaWGUbGaeyOe I0IaaGymaaGaayjkaiaawMcaaiqadIhagaqeamaaBaaaleaacaWGUb GaeyOeI0IaaGymaaqabaaaaOWaaqIaaeaacqGHsislcaaIYaWaaeWa aeaacaWGUbGaeyOeI0IaaGymaaGaayjkaiaawMcaaiqadIhagaqeam aaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaaaaOGaey4kaSYaaeWa aeaadaWcaaqaaiqadIhagaqeamaaBaaaleaacaWGUbGaeyOeI0IaaG ymaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaad6gaaeqaaaGcbaGa amOBaaaaaiaawIcacaGLPaaadaqadaqaaiaad6gacqGHsislcaaIXa aacaGLOaGaayzkaaaacaGLOaGaayzkaaGaey4kaSIaamiEamaaDaaa leaacaWGUbaabaGaaGOmaaaakiabgkHiTiaaikdacaWG4bWaaSbaaS qaaiaad6gaaeqaaOGabmiEayaaraWaaSbaaSqaaiaad6gaaeqaaOGa ey4kaSIabmiEayaaraWaa0baaSqaaiaad6gaaeaacaaIYaaaaaGcba GaamOBaaaaaeaacaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaeyypa0Za aSaaaeaadaqadaqaaiaad6gacqGHsislcaaIXaaacaGLOaGaayzkaa GaamODamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccqGHRaWk daqadaqaamaalaaabaGabmiEayaaraWaaSbaaSqaaiaad6gacqGHsi slcaaIXaaabeaakiabgkHiTiaadIhadaWgaaWcbaGaamOBaaqabaaa keaacaWGUbaaaaGaayjkaiaawMcaamaabmaabaWaaSaaaeaaceWG4b GbaebadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaeyOeI0Ia amiEamaaBaaaleaacaWGUbaabeaaaOqaaiaad6gaaaaacaGLOaGaay zkaaWaaeWaaeaacaWGUbGaeyOeI0IaaGymaaGaayjkaiaawMcaaiab gUcaRiaadIhadaqhaaWcbaGaamOBaaqaaiaaikdaaaGccqGHsislca aIYaGaamiEamaaBaaaleaacaWGUbaabeaakiqadIhagaqeamaaBaaa leaacaWGUbaabeaakiabgUcaRiqadIhagaqeamaaDaaaleaacaWGUb aabaGaaGOmaaaaaOqaaiaad6gaaaaabaGaamODamaaBaaaleaacaWG Ubaabeaakiabg2da9maalaaabaWaaeWaaeaacaWGUbGaeyOeI0IaaG ymaaGaayjkaiaawMcaaiaadAhadaWgaaWcbaGaamOBaiabgkHiTiaa igdaaeqaaOGaey4kaSIaamiEamaaDaaaleaacaWGUbaabaGaaGOmaa aakiabgUcaRmaabmaabaGaamOBaiabgkHiTiaaigdaaiaawIcacaGL PaaadaqadaqaamaalaaabaGabmiEayaaraWaa0baaSqaaiaad6gacq GHsislcaaIXaaabaGaaGOmaaaakiabgkHiTiaaikdacaWG4bWaaSba aSqaaiaad6gaaeqaaOGabmiEayaaraWaaSbaaSqaaiaad6gacqGHsi slcaaIXaaabeaakiabgUcaRiaadIhadaqhaaWcbaGaamOBaaqaaiaa ikdaaaaakeaacaWGUbWaaWbaaSqabeaacaaIYaaaaaaaaOGaayjkai aawMcaaiabgkHiTiaaikdacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGa bmiEayaaraWaaSbaaSqaaiaad6gaaeqaaOGaey4kaSIabmiEayaara Waa0baaSqaaiaad6gaaeaacaaIYaaaaaGcbaGaamOBaaaaaeaacaWG 2bWaaSbaaSqaaiaad6gaaeqaaOGaeyypa0ZaaSaaaeaadaqadaqaai aad6gacqGHsislcaaIXaaacaGLOaGaayzkaaGaamODamaaBaaaleaa caWGUbGaeyOeI0IaaGymaaqabaGccqGHRaWkcaWG4bWaa0baaSqaai aad6gaaeaacaaIYaaaaOGaey4kaSYaaSaaaeaadaqadaqaaiaad6ga cqGHsislcaaIXaaacaGLOaGaayzkaaGabmiEayaaraWaa0baaSqaai aad6gacqGHsislcaaIXaaabaGaaGOmaaaaaOqaaiaad6gadaahaaWc beqaaiaaikdaaaaaaOGaeyOeI0YaaSaaaeaacaaIYaWaaeWaaeaaca WGUbGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaadIhadaWgaaWcbaGa amOBaaqabaGcceWG4bGbaebadaWgaaWcbaGaamOBaiabgkHiTiaaig daaeqaaaGcbaGaamOBamaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWk daWcaaqaamaabmaabaGaamOBaiabgkHiTiaaigdaaiaawIcacaGLPa aacaWG4bWaa0baaSqaaiaad6gaaeaacaaIYaaaaaGcbaGaamOBamaa CaaaleqabaGaaGOmaaaaaaGccqGHsislcaaIYaGaamiEamaaBaaale aacaWGUbaabeaakiqadIhagaqeamaaBaaaleaacaWGUbaabeaakiab gUcaRiqadIhagaqeamaaDaaaleaacaWGUbaabaGaaGOmaaaaaOqaai aad6gaaaaaaaa@653A@

Since the recurrence equation for the sample mean is:

x ¯ n = x ¯ n1 x ¯ n1 x n n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaara WaaSbaaSqaaiaad6gaaeqaaOGaeyypa0JabmiEayaaraWaaSbaaSqa aiaad6gacqGHsislcaaIXaaabeaakiabgkHiTmaalaaabaGabmiEay aaraWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiabgkHiTiaa dIhadaWgaaWcbaGaamOBaaqabaaakeaacaWGUbaaaaaa@460A@ ,

then we also have:

x ¯ n = n x ¯ n1 x ¯ n1 + x n n x ¯ n = ( n1 ) x ¯ n1 + x n n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaaceWG4b GbaebadaWgaaWcbaGaamOBaaqabaGccqGH9aqpdaWcaaqaaiaad6ga ceWG4bGbaebadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaey OeI0IabmiEayaaraWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaa kiabgUcaRiaadIhadaWgaaWcbaGaamOBaaqabaaakeaacaWGUbaaaa qaaiqadIhagaqeamaaBaaaleaacaWGUbaabeaakiabg2da9maalaaa baWaaeWaaeaacaWGUbGaeyOeI0IaaGymaaGaayjkaiaawMcaaiqadI hagaqeamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccqGHRaWk caWG4bWaaSbaaSqaaiaad6gaaeqaaaGcbaGaamOBaaaaaaaa@5655@

Moreover, we have:

x ¯ n 2 = ( ( n1 ) x ¯ n1 + x n n ) 2 x ¯ n 2 = ( ( n1 ) x ¯ n1 + x n ) 2 n 2 x ¯ n 2 = ( n1 ) 2 x ¯ n1 2 +2( n1 ) x n x ¯ n1 + x n 2 n 2 x ¯ n 2 = ( n1 ) 2 x ¯ n1 2 n 2 + 2( n1 ) x n x ¯ n1 n 2 + x n 2 n 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaaceWG4b GbaebadaqhaaWcbaGaamOBaaqaaiaaikdaaaGccqGH9aqpdaqadaqa amaalaaabaWaaeWaaeaacaWGUbGaeyOeI0IaaGymaaGaayjkaiaawM caaiqadIhagaqeamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGc cqGHRaWkcaWG4bWaaSbaaSqaaiaad6gaaeqaaaGcbaGaamOBaaaaai aawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakeaaceWG4bGbaeba daqhaaWcbaGaamOBaaqaaiaaikdaaaGccqGH9aqpdaWcaaqaamaabm aabaWaaeWaaeaacaWGUbGaeyOeI0IaaGymaaGaayjkaiaawMcaaiqa dIhagaqeamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccqGHRa WkcaWG4bWaaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaWaaWba aSqabeaacaaIYaaaaaGcbaGaamOBamaaCaaaleqabaGaaGOmaaaaaa aakeaaceWG4bGbaebadaqhaaWcbaGaamOBaaqaaiaaikdaaaGccqGH 9aqpdaWcaaqaamaabmaabaGaamOBaiabgkHiTiaaigdaaiaawIcaca GLPaaadaahaaWcbeqaaiaaikdaaaGcceWG4bGbaebadaqhaaWcbaGa amOBaiabgkHiTiaaigdaaeaacaaIYaaaaOGaey4kaSIaaGOmamaabm aabaGaamOBaiabgkHiTiaaigdaaiaawIcacaGLPaaacaWG4bWaaSba aSqaaiaad6gaaeqaaOGabmiEayaaraWaaSbaaSqaaiaad6gacqGHsi slcaaIXaaabeaakiabgUcaRiaadIhadaqhaaWcbaGaamOBaaqaaiaa ikdaaaaakeaacaWGUbWaaWbaaSqabeaacaaIYaaaaaaaaOqaaiqadI hagaqeamaaDaaaleaacaWGUbaabaGaaGOmaaaakiabg2da9maalaaa baWaaeWaaeaacaWGUbGaeyOeI0IaaGymaaGaayjkaiaawMcaamaaCa aaleqabaGaaGOmaaaakiqadIhagaqeamaaDaaaleaacaWGUbGaeyOe I0IaaGymaaqaaiaaikdaaaaakeaacaWGUbWaaWbaaSqabeaacaaIYa aaaaaakiabgUcaRmaalaaabaGaaGOmamaabmaabaGaamOBaiabgkHi TiaaigdaaiaawIcacaGLPaaacaWG4bWaaSbaaSqaaiaad6gaaeqaaO GabmiEayaaraWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaaaOqa aiaad6gadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaaca WG4bWaa0baaSqaaiaad6gaaeaacaaIYaaaaaGcbaGaamOBamaaCaaa leqabaGaaGOmaaaaaaaaaaa@9E84@

With this, we have:

v n = ( n1 ) v n1 + x n 2 + ( n1 ) x ¯ n1 2 n 2 2( n1 ) x n x ¯ n1 n 2 + ( n1 ) x n 2 n 2 2 x n x ¯ n +( ( n1 ) 2 x ¯ n1 2 n 2 + 2( n1 ) x n x ¯ n1 n 2 + x n 2 n 2 ) n v n = ( n1 ) v n1 + x n 2 + ( n1 ) x ¯ n1 2 n 2 2( n1 ) x n x ¯ n1 n 2 + ( n1 ) x n 2 n 2 2 x n x ¯ n + ( n1 ) 2 x ¯ n1 2 n 2 + 2( n1 ) x n x ¯ n1 n 2 + x n 2 n 2 n v n = ( n1 ) v n1 + x n 2 + ( n1 ) 2 x ¯ n1 2 n 2 + ( n1 ) x ¯ n1 2 n 2 + ( n1 ) x n 2 n 2 + x n 2 n 2 2 x n x ¯ n n v n = ( n1 ) v n1 + x n 2 +( ( n1 ) 2 +( n1 ) )( x ¯ n1 2 n 2 )+( ( n1 )+1 )( x n 2 n 2 )2 x n x ¯ n n v n = ( n1 ) v n1 + x n 2 +( ( n1 )( ( n1 )+1 ) )( x ¯ n1 2 n 2 )+( n )( x n 2 n 2 )2 x n x ¯ n n v n = ( n1 ) v n1 + x n 2 +( ( n1 )( n ) )( x ¯ n1 2 n 2 )+( n )( x n 2 n 2 )2 x n x ¯ n n v n = ( n1 ) v n1 + x n 2 +( n1 )( x ¯ n1 2 n )+ x n 2 n 2 x n x ¯ n n v n = ( n1 ) v n1 + x n 2 x n x ¯ n + ( n1 ) x ¯ n1 2 n + x n 2 n x n x ¯ n n v n = ( n1 ) v n1 + x n 2 x n x ¯ n + ( n1 ) x ¯ n1 2 n n x n x ¯ n n + x n 2 n n v n = ( n1 ) v n1 + x n 2 x n x ¯ n + ( n1 ) x ¯ n1 2 n n x n x ¯ n x n 2 n n v n = ( n1 ) v n1 + x n 2 x n x ¯ n + ( n1 ) x ¯ n1 2 n ( n x ¯ n x n ) x n n n v n = ( n1 ) v n1 + x n 2 x n x ¯ n + ( n1 ) x ¯ n1 2 n ( n1 n1 )( ( n x ¯ n x n ) x n n ) n v n = ( n1 ) v n1 + x n 2 x n x ¯ n + ( n1 ) x ¯ n1 2 n ( ( n1 ) x n n )( n x ¯ n x n n1 ) n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaacaWG2b WaaSbaaSqaaiaad6gaaeqaaOGaeyypa0ZaaSaaaeaadaqadaqaaiaa d6gacqGHsislcaaIXaaacaGLOaGaayzkaaGaamODamaaBaaaleaaca WGUbGaeyOeI0IaaGymaaqabaGccqGHRaWkcaWG4bWaa0baaSqaaiaa d6gaaeaacaaIYaaaaOGaey4kaSYaaSaaaeaadaqadaqaaiaad6gacq GHsislcaaIXaaacaGLOaGaayzkaaGabmiEayaaraWaa0baaSqaaiaa d6gacqGHsislcaaIXaaabaGaaGOmaaaaaOqaaiaad6gadaahaaWcbe qaaiaaikdaaaaaaOGaeyOeI0YaaSaaaeaacaaIYaWaaeWaaeaacaWG UbGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaadIhadaWgaaWcbaGaam OBaaqabaGcceWG4bGbaebadaWgaaWcbaGaamOBaiabgkHiTiaaigda aeqaaaGcbaGaamOBamaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkda WcaaqaamaabmaabaGaamOBaiabgkHiTiaaigdaaiaawIcacaGLPaaa caWG4bWaa0baaSqaaiaad6gaaeaacaaIYaaaaaGcbaGaamOBamaaCa aaleqabaGaaGOmaaaaaaGccqGHsislcaaIYaGaamiEamaaBaaaleaa caWGUbaabeaakiqadIhagaqeamaaBaaaleaacaWGUbaabeaakiabgU caRmaabmaabaWaaSaaaeaadaqadaqaaiaad6gacqGHsislcaaIXaaa caGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGabmiEayaaraWaa0 baaSqaaiaad6gacqGHsislcaaIXaaabaGaaGOmaaaaaOqaaiaad6ga daahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaaIYaWaae WaaeaacaWGUbGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaadIhadaWg aaWcbaGaamOBaaqabaGcceWG4bGbaebadaWgaaWcbaGaamOBaiabgk HiTiaaigdaaeqaaaGcbaGaamOBamaaCaaaleqabaGaaGOmaaaaaaGc cqGHRaWkdaWcaaqaaiaadIhadaqhaaWcbaGaamOBaaqaaiaaikdaaa aakeaacaWGUbWaaWbaaSqabeaacaaIYaaaaaaaaOGaayjkaiaawMca aaqaaiaad6gaaaaabaGaamODamaaBaaaleaacaWGUbaabeaakiabg2 da9maalaaabaWaaeWaaeaacaWGUbGaeyOeI0IaaGymaaGaayjkaiaa wMcaaiaadAhadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaey 4kaSIaamiEamaaDaaaleaacaWGUbaabaGaaGOmaaaakiabgUcaRmaa laaabaWaaeWaaeaacaWGUbGaeyOeI0IaaGymaaGaayjkaiaawMcaai qadIhagaqeamaaDaaaleaacaWGUbGaeyOeI0IaaGymaaqaaiaaikda aaaakeaacaWGUbWaaWbaaSqabeaacaaIYaaaaaaakmaaKiaabaGaey OeI0YaaSaaaeaacaaIYaWaaeWaaeaacaWGUbGaeyOeI0IaaGymaaGa ayjkaiaawMcaaiaadIhadaWgaaWcbaGaamOBaaqabaGcceWG4bGbae badaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaaGcbaGaamOBamaa CaaaleqabaGaaGOmaaaaaaaaaOGaey4kaSYaaSaaaeaadaqadaqaai aad6gacqGHsislcaaIXaaacaGLOaGaayzkaaGaamiEamaaDaaaleaa caWGUbaabaGaaGOmaaaaaOqaaiaad6gadaahaaWcbeqaaiaaikdaaa aaaOGaeyOeI0IaaGOmaiaadIhadaWgaaWcbaGaamOBaaqabaGcceWG 4bGbaebadaWgaaWcbaGaamOBaaqabaGccqGHRaWkdaWcaaqaamaabm aabaGaamOBaiabgkHiTiaaigdaaiaawIcacaGLPaaadaahaaWcbeqa aiaaikdaaaGcceWG4bGbaebadaqhaaWcbaGaamOBaiabgkHiTiaaig daaeaacaaIYaaaaaGcbaGaamOBamaaCaaaleqabaGaaGOmaaaaaaGc daajcaqaaiabgUcaRmaalaaabaGaaGOmamaabmaabaGaamOBaiabgk HiTiaaigdaaiaawIcacaGLPaaacaWG4bWaaSbaaSqaaiaad6gaaeqa aOGabmiEayaaraWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaaaO qaaiaad6gadaahaaWcbeqaaiaaikdaaaaaaaaakiabgUcaRmaalaaa baGaamiEamaaDaaaleaacaWGUbaabaGaaGOmaaaaaOqaaiaad6gada ahaaWcbeqaaiaaikdaaaaaaaGcbaGaamOBaaaaaeaacaWG2bWaaSba aSqaaiaad6gaaeqaaOGaeyypa0ZaaSaaaeaadaqadaqaaiaad6gacq GHsislcaaIXaaacaGLOaGaayzkaaGaamODamaaBaaaleaacaWGUbGa eyOeI0IaaGymaaqabaGccqGHRaWkcaWG4bWaa0baaSqaaiaad6gaae aacaaIYaaaaOGaey4kaSYaaSaaaeaadaqadaqaaiaad6gacqGHsisl caaIXaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGabmiEay aaraWaa0baaSqaaiaad6gacqGHsislcaaIXaaabaGaaGOmaaaaaOqa aiaad6gadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaada qadaqaaiaad6gacqGHsislcaaIXaaacaGLOaGaayzkaaGabmiEayaa raWaa0baaSqaaiaad6gacqGHsislcaaIXaaabaGaaGOmaaaaaOqaai aad6gadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaadaqa daqaaiaad6gacqGHsislcaaIXaaacaGLOaGaayzkaaGaamiEamaaDa aaleaacaWGUbaabaGaaGOmaaaaaOqaaiaad6gadaahaaWcbeqaaiaa ikdaaaaaaOGaey4kaSYaaSaaaeaacaWG4bWaa0baaSqaaiaad6gaae aacaaIYaaaaaGcbaGaamOBamaaCaaaleqabaGaaGOmaaaaaaGccqGH sislcaaIYaGaamiEamaaBaaaleaacaWGUbaabeaakiqadIhagaqeam aaBaaaleaacaWGUbaabeaaaOqaaiaad6gaaaaabaGaamODamaaBaaa leaacaWGUbaabeaakiabg2da9maalaaabaWaaeWaaeaacaWGUbGaey OeI0IaaGymaaGaayjkaiaawMcaaiaadAhadaWgaaWcbaGaamOBaiab gkHiTiaaigdaaeqaaOGaey4kaSIaamiEamaaDaaaleaacaWGUbaaba GaaGOmaaaakiabgUcaRmaabmaabaWaaeWaaeaacaWGUbGaeyOeI0Ia aGymaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgUcaRm aabmaabaGaamOBaiabgkHiTiaaigdaaiaawIcacaGLPaaaaiaawIca caGLPaaadaqadaqaamaalaaabaGabmiEayaaraWaa0baaSqaaiaad6 gacqGHsislcaaIXaaabaGaaGOmaaaaaOqaaiaad6gadaahaaWcbeqa aiaaikdaaaaaaaGccaGLOaGaayzkaaGaey4kaSYaaeWaaeaadaqada qaaiaad6gacqGHsislcaaIXaaacaGLOaGaayzkaaGaey4kaSIaaGym aaGaayjkaiaawMcaamaabmaabaWaaSaaaeaacaWG4bWaa0baaSqaai aad6gaaeaacaaIYaaaaaGcbaGaamOBamaaCaaaleqabaGaaGOmaaaa aaaakiaawIcacaGLPaaacqGHsislcaaIYaGaamiEamaaBaaaleaaca WGUbaabeaakiqadIhagaqeamaaBaaaleaacaWGUbaabeaaaOqaaiaa d6gaaaaabaGaamODamaaBaaaleaacaWGUbaabeaakiabg2da9maala aabaWaaeWaaeaacaWGUbGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaa dAhadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaey4kaSIaam iEamaaDaaaleaacaWGUbaabaGaaGOmaaaakiabgUcaRmaabmaabaWa aeWaaeaacaWGUbGaeyOeI0IaaGymaaGaayjkaiaawMcaamaabmaaba WaaeWaaeaacaWGUbGaeyOeI0IaaGymaaGaayjkaiaawMcaaiabgUca RiaaigdaaiaawIcacaGLPaaaaiaawIcacaGLPaaadaqadaqaamaala aabaGabmiEayaaraWaa0baaSqaaiaad6gacqGHsislcaaIXaaabaGa aGOmaaaaaOqaaiaad6gadaahaaWcbeqaaiaaikdaaaaaaaGccaGLOa GaayzkaaGaey4kaSYaaeWaaeaacaWGUbaacaGLOaGaayzkaaWaaeWa aeaadaWcaaqaaiaadIhadaqhaaWcbaGaamOBaaqaaiaaikdaaaaake aacaWGUbWaaWbaaSqabeaacaaIYaaaaaaaaOGaayjkaiaawMcaaiab gkHiTiaaikdacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGabmiEayaara WaaSbaaSqaaiaad6gaaeqaaaGcbaGaamOBaaaaaeaacaWG2bWaaSba aSqaaiaad6gaaeqaaOGaeyypa0ZaaSaaaeaadaqadaqaaiaad6gacq GHsislcaaIXaaacaGLOaGaayzkaaGaamODamaaBaaaleaacaWGUbGa eyOeI0IaaGymaaqabaGccqGHRaWkcaWG4bWaa0baaSqaaiaad6gaae aacaaIYaaaaOGaey4kaSYaaeWaaeaadaqadaqaaiaad6gacqGHsisl caaIXaaacaGLOaGaayzkaaWaaeWaaeaacaWGUbaacaGLOaGaayzkaa aacaGLOaGaayzkaaWaaeWaaeaadaWcaaqaaiqadIhagaqeamaaDaaa leaacaWGUbGaeyOeI0IaaGymaaqaaiaaikdaaaaakeaacaWGUbWaaW baaSqabeaacaaIYaaaaaaaaOGaayjkaiaawMcaaiabgUcaRmaabmaa baGaamOBaaGaayjkaiaawMcaamaabmaabaWaaSaaaeaacaWG4bWaa0 baaSqaaiaad6gaaeaacaaIYaaaaaGcbaGaamOBamaaCaaaleqabaGa aGOmaaaaaaaakiaawIcacaGLPaaacqGHsislcaaIYaGaamiEamaaBa aaleaacaWGUbaabeaakiqadIhagaqeamaaBaaaleaacaWGUbaabeaa aOqaaiaad6gaaaaabaGaamODamaaBaaaleaacaWGUbaabeaakiabg2 da9maalaaabaWaaeWaaeaacaWGUbGaeyOeI0IaaGymaaGaayjkaiaa wMcaaiaadAhadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaey 4kaSIaamiEamaaDaaaleaacaWGUbaabaGaaGOmaaaakiabgUcaRmaa bmaabaGaamOBaiabgkHiTiaaigdaaiaawIcacaGLPaaadaqadaqaam aalaaabaGabmiEayaaraWaa0baaSqaaiaad6gacqGHsislcaaIXaaa baGaaGOmaaaaaOqaaiaad6gaaaaacaGLOaGaayzkaaGaey4kaSYaaS aaaeaacaWG4bWaa0baaSqaaiaad6gaaeaacaaIYaaaaaGcbaGaamOB aaaacqGHsislcaaIYaGaamiEamaaBaaaleaacaWGUbaabeaakiqadI hagaqeamaaBaaaleaacaWGUbaabeaaaOqaaiaad6gaaaaabaGaamOD amaaBaaaleaacaWGUbaabeaakiabg2da9maalaaabaWaaeWaaeaaca WGUbGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaadAhadaWgaaWcbaGa amOBaiabgkHiTiaaigdaaeqaaOGaey4kaSIaamiEamaaDaaaleaaca WGUbaabaGaaGOmaaaakiabgkHiTiaadIhadaWgaaWcbaGaamOBaaqa baGcceWG4bGbaebadaWgaaWcbaGaamOBaaqabaGccqGHRaWkdaWcaa qaamaabmaabaGaamOBaiabgkHiTiaaigdaaiaawIcacaGLPaaaceWG 4bGbaebadaqhaaWcbaGaamOBaiabgkHiTiaaigdaaeaacaaIYaaaaa GcbaGaamOBaaaacqGHRaWkdaWcaaqaaiaadIhadaqhaaWcbaGaamOB aaqaaiaaikdaaaaakeaacaWGUbaaaiabgkHiTiaadIhadaWgaaWcba GaamOBaaqabaGcceWG4bGbaebadaWgaaWcbaGaamOBaaqabaaakeaa caWGUbaaaaqaaiaadAhadaWgaaWcbaGaamOBaaqabaGccqGH9aqpda WcaaqaamaabmaabaGaamOBaiabgkHiTiaaigdaaiaawIcacaGLPaaa caWG2bWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiabgUcaRi aadIhadaqhaaWcbaGaamOBaaqaaiaaikdaaaGccqGHsislcaWG4bWa aSbaaSqaaiaad6gaaeqaaOGabmiEayaaraWaaSbaaSqaaiaad6gaae qaaOGaey4kaSYaaSaaaeaadaqadaqaaiaad6gacqGHsislcaaIXaaa caGLOaGaayzkaaGabmiEayaaraWaa0baaSqaaiaad6gacqGHsislca aIXaaabaGaaGOmaaaaaOqaaiaad6gaaaGaeyOeI0YaaSaaaeaacaWG UbGaamiEamaaBaaaleaacaWGUbaabeaakiqadIhagaqeamaaBaaale aacaWGUbaabeaaaOqaaiaad6gaaaGaey4kaSYaaSaaaeaacaWG4bWa a0baaSqaaiaad6gaaeaacaaIYaaaaaGcbaGaamOBaaaaaeaacaWGUb aaaaqaaiaadAhadaWgaaWcbaGaamOBaaqabaGccqGH9aqpdaWcaaqa amaabmaabaGaamOBaiabgkHiTiaaigdaaiaawIcacaGLPaaacaWG2b WaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiabgUcaRiaadIha daqhaaWcbaGaamOBaaqaaiaaikdaaaGccqGHsislcaWG4bWaaSbaaS qaaiaad6gaaeqaaOGabmiEayaaraWaaSbaaSqaaiaad6gaaeqaaOGa ey4kaSYaaSaaaeaadaqadaqaaiaad6gacqGHsislcaaIXaaacaGLOa GaayzkaaGabmiEayaaraWaa0baaSqaaiaad6gacqGHsislcaaIXaaa baGaaGOmaaaaaOqaaiaad6gaaaGaeyOeI0YaaSaaaeaacaWGUbGaam iEamaaBaaaleaacaWGUbaabeaakiqadIhagaqeamaaBaaaleaacaWG UbaabeaakiabgkHiTiaadIhadaqhaaWcbaGaamOBaaqaaiaaikdaaa aakeaacaWGUbaaaaqaaiaad6gaaaaabaGaamODamaaBaaaleaacaWG Ubaabeaakiabg2da9maalaaabaWaaeWaaeaacaWGUbGaeyOeI0IaaG ymaaGaayjkaiaawMcaaiaadAhadaWgaaWcbaGaamOBaiabgkHiTiaa igdaaeqaaOGaey4kaSIaamiEamaaDaaaleaacaWGUbaabaGaaGOmaa aakiabgkHiTiaadIhadaWgaaWcbaGaamOBaaqabaGcceWG4bGbaeba daWgaaWcbaGaamOBaaqabaGccqGHRaWkdaWcaaqaamaabmaabaGaam OBaiabgkHiTiaaigdaaiaawIcacaGLPaaaceWG4bGbaebadaqhaaWc baGaamOBaiabgkHiTiaaigdaaeaacaaIYaaaaaGcbaGaamOBaaaacq GHsisldaWcaaqaamaabmaabaGaamOBaiqadIhagaqeamaaBaaaleaa caWGUbaabeaakiabgkHiTiaadIhadaWgaaWcbaGaamOBaaqabaaaki aawIcacaGLPaaacaWG4bWaaSbaaSqaaiaad6gaaeqaaaGcbaGaamOB aaaaaeaacaWGUbaaaaqaaiaadAhadaWgaaWcbaGaamOBaaqabaGccq GH9aqpdaWcaaqaamaabmaabaGaamOBaiabgkHiTiaaigdaaiaawIca caGLPaaacaWG2bWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaaki abgUcaRiaadIhadaqhaaWcbaGaamOBaaqaaiaaikdaaaGccqGHsisl caWG4bWaaSbaaSqaaiaad6gaaeqaaOGabmiEayaaraWaaSbaaSqaai aad6gaaeqaaOGaey4kaSYaaSaaaeaadaqadaqaaiaad6gacqGHsisl caaIXaaacaGLOaGaayzkaaGabmiEayaaraWaa0baaSqaaiaad6gacq GHsislcaaIXaaabaGaaGOmaaaaaOqaaiaad6gaaaGaeyOeI0YaaeWa aeaadaWcaaqaaiaad6gacqGHsislcaaIXaaabaGaamOBaiabgkHiTi aaigdaaaaacaGLOaGaayzkaaWaaeWaaeaadaWcaaqaamaabmaabaGa amOBaiqadIhagaqeamaaBaaaleaacaWGUbaabeaakiabgkHiTiaadI hadaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaacaWG4bWaaSba aSqaaiaad6gaaeqaaaGcbaGaamOBaaaaaiaawIcacaGLPaaaaeaaca WGUbaaaaqaaiaadAhadaWgaaWcbaGaamOBaaqabaGccqGH9aqpdaWc aaqaamaabmaabaGaamOBaiabgkHiTiaaigdaaiaawIcacaGLPaaaca WG2bWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiabgUcaRiaa dIhadaqhaaWcbaGaamOBaaqaaiaaikdaaaGccqGHsislcaWG4bWaaS baaSqaaiaad6gaaeqaaOGabmiEayaaraWaaSbaaSqaaiaad6gaaeqa aOGaey4kaSYaaSaaaeaadaqadaqaaiaad6gacqGHsislcaaIXaaaca GLOaGaayzkaaGabmiEayaaraWaa0baaSqaaiaad6gacqGHsislcaaI XaaabaGaaGOmaaaaaOqaaiaad6gaaaGaeyOeI0YaaeWaaeaadaWcaa qaamaabmaabaGaamOBaiabgkHiTiaaigdaaiaawIcacaGLPaaacaWG 4bWaaSbaaSqaaiaad6gaaeqaaaGcbaGaamOBaaaaaiaawIcacaGLPa aadaqadaqaamaalaaabaGaamOBaiqadIhagaqeamaaBaaaleaacaWG UbaabeaakiabgkHiTiaadIhadaWgaaWcbaGaamOBaaqabaaakeaaca WGUbGaeyOeI0IaaGymaaaaaiaawIcacaGLPaaaaeaacaWGUbaaaaaa aa@03A7@

As previously noted, the recurrence equation for the sample mean can be rewritten as:

x ¯ n = ( n1 ) x ¯ n1 + x n n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaara WaaSbaaSqaaiaad6gaaeqaaOGaeyypa0ZaaSaaaeaadaqadaqaaiaa d6gacqGHsislcaaIXaaacaGLOaGaayzkaaGabmiEayaaraWaaSbaaS qaaiaad6gacqGHsislcaaIXaaabeaakiabgUcaRiaadIhadaWgaaWc baGaamOBaaqabaaakeaacaWGUbaaaaaa@4550@ ,

then we have:

( n1 ) x ¯ n1 + x n n = x ¯ n ( n1 ) x ¯ n1 + x n =n x ¯ n ( n1 ) x ¯ n1 =n x ¯ n x n x ¯ n1 = n x ¯ n x n n1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaadaWcaa qaamaabmaabaGaamOBaiabgkHiTiaaigdaaiaawIcacaGLPaaaceWG 4bGbaebadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaey4kaS IaamiEamaaBaaaleaacaWGUbaabeaaaOqaaiaad6gaaaGaeyypa0Ja bmiEayaaraWaaSbaaSqaaiaad6gaaeqaaaGcbaWaaeWaaeaacaWGUb GaeyOeI0IaaGymaaGaayjkaiaawMcaaiqadIhagaqeamaaBaaaleaa caWGUbGaeyOeI0IaaGymaaqabaGccqGHRaWkcaWG4bWaaSbaaSqaai aad6gaaeqaaOGaeyypa0JaamOBaiqadIhagaqeamaaBaaaleaacaWG UbaabeaaaOqaamaabmaabaGaamOBaiabgkHiTiaaigdaaiaawIcaca GLPaaaceWG4bGbaebadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqa aOGaeyypa0JaamOBaiqadIhagaqeamaaBaaaleaacaWGUbaabeaaki abgkHiTiaadIhadaWgaaWcbaGaamOBaaqabaaakeaaceWG4bGbaeba daWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaeyypa0ZaaSaaae aacaWGUbGabmiEayaaraWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0Ia amiEamaaBaaaleaacaWGUbaabeaaaOqaaiaad6gacqGHsislcaaIXa aaaaaaaa@71D4@

With this, we have:

v n = ( n1 ) v n1 + x n 2 x n x ¯ n + ( n1 ) x ¯ n1 2 n ( ( n1 ) x n n )( x ¯ n1 ) n v n = ( n1 ) v n1 + x n 2 x n x ¯ n +( ( n1 ) x ¯ n1 n ( n x n x n n ) )( x ¯ n1 ) n v n = ( n1 ) v n1 + x n 2 x n x ¯ n +( ( n1 ) x ¯ n1 n n x n n + x n n )( x ¯ n1 ) n v n = ( n1 ) v n1 + x n 2 x n x ¯ n +( ( ( n1 ) x ¯ n1 + x n n ) x n )( x ¯ n1 ) n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaacaWG2b WaaSbaaSqaaiaad6gaaeqaaOGaeyypa0ZaaSaaaeaadaqadaqaaiaa d6gacqGHsislcaaIXaaacaGLOaGaayzkaaGaamODamaaBaaaleaaca WGUbGaeyOeI0IaaGymaaqabaGccqGHRaWkcaWG4bWaa0baaSqaaiaa d6gaaeaacaaIYaaaaOGaeyOeI0IaamiEamaaBaaaleaacaWGUbaabe aakiqadIhagaqeamaaBaaaleaacaWGUbaabeaakiabgUcaRmaalaaa baWaaeWaaeaacaWGUbGaeyOeI0IaaGymaaGaayjkaiaawMcaaiqadI hagaqeamaaDaaaleaacaWGUbGaeyOeI0IaaGymaaqaaiaaikdaaaaa keaacaWGUbaaaiabgkHiTmaabmaabaWaaSaaaeaadaqadaqaaiaad6 gacqGHsislcaaIXaaacaGLOaGaayzkaaGaamiEamaaBaaaleaacaWG UbaabeaaaOqaaiaad6gaaaaacaGLOaGaayzkaaWaaeWaaeaaceWG4b GbaebadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaaGccaGLOaGa ayzkaaaabaGaamOBaaaaaeaacaWG2bWaaSbaaSqaaiaad6gaaeqaaO Gaeyypa0ZaaSaaaeaadaqadaqaaiaad6gacqGHsislcaaIXaaacaGL OaGaayzkaaGaamODamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqaba GccqGHRaWkcaWG4bWaa0baaSqaaiaad6gaaeaacaaIYaaaaOGaeyOe I0IaamiEamaaBaaaleaacaWGUbaabeaakiqadIhagaqeamaaBaaale aacaWGUbaabeaakiabgUcaRmaabmaabaWaaSaaaeaadaqadaqaaiaa d6gacqGHsislcaaIXaaacaGLOaGaayzkaaGabmiEayaaraWaaSbaaS qaaiaad6gacqGHsislcaaIXaaabeaaaOqaaiaad6gaaaGaeyOeI0Ya aeWaaeaadaWcaaqaaiaad6gacaWG4bWaaSbaaSqaaiaad6gaaeqaaO GaeyOeI0IaamiEamaaBaaaleaacaWGUbaabeaaaOqaaiaad6gaaaaa caGLOaGaayzkaaaacaGLOaGaayzkaaWaaeWaaeaaceWG4bGbaebada WgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaaGccaGLOaGaayzkaaaa baGaamOBaaaaaeaacaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaeyypa0 ZaaSaaaeaadaqadaqaaiaad6gacqGHsislcaaIXaaacaGLOaGaayzk aaGaamODamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccqGHRa WkcaWG4bWaa0baaSqaaiaad6gaaeaacaaIYaaaaOGaeyOeI0IaamiE amaaBaaaleaacaWGUbaabeaakiqadIhagaqeamaaBaaaleaacaWGUb aabeaakiabgUcaRmaabmaabaWaaSaaaeaadaqadaqaaiaad6gacqGH sislcaaIXaaacaGLOaGaayzkaaGabmiEayaaraWaaSbaaSqaaiaad6 gacqGHsislcaaIXaaabeaaaOqaaiaad6gaaaGaeyOeI0YaaSaaaeaa daajcaqaaiaad6gaaaGaamiEamaaBaaaleaacaWGUbaabeaaaOqaam aaKiaabaGaamOBaaaaaaGaey4kaSYaaSaaaeaacaWG4bWaaSbaaSqa aiaad6gaaeqaaaGcbaGaamOBaaaaaiaawIcacaGLPaaadaqadaqaai qadIhagaqeamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaaakiaa wIcacaGLPaaaaeaacaWGUbaaaaqaaiaadAhadaWgaaWcbaGaamOBaa qabaGccqGH9aqpdaWcaaqaamaabmaabaGaamOBaiabgkHiTiaaigda aiaawIcacaGLPaaacaWG2bWaaSbaaSqaaiaad6gacqGHsislcaaIXa aabeaakiabgUcaRiaadIhadaqhaaWcbaGaamOBaaqaaiaaikdaaaGc cqGHsislcaWG4bWaaSbaaSqaaiaad6gaaeqaaOGabmiEayaaraWaaS baaSqaaiaad6gaaeqaaOGaey4kaSYaaeWaaeaadaqadaqaamaalaaa baWaaeWaaeaacaWGUbGaeyOeI0IaaGymaaGaayjkaiaawMcaaiqadI hagaqeamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccqGHRaWk caWG4bWaaSbaaSqaaiaad6gaaeqaaaGcbaGaamOBaaaaaiaawIcaca GLPaaacqGHsislcaWG4bWaaSbaaSqaaiaad6gaaeqaaaGccaGLOaGa ayzkaaWaaeWaaeaaceWG4bGbaebadaWgaaWcbaGaamOBaiabgkHiTi aaigdaaeqaaaGccaGLOaGaayzkaaaabaGaamOBaaaaaaaa@F213@

Since the recurrence equation of the sample mean can be rewritten as:

x ¯ n = ( n1 ) x ¯ n1 + x n n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaara WaaSbaaSqaaiaad6gaaeqaaOGaeyypa0ZaaSaaaeaadaqadaqaaiaa d6gacqGHsislcaaIXaaacaGLOaGaayzkaaGabmiEayaaraWaaSbaaS qaaiaad6gacqGHsislcaaIXaaabeaakiabgUcaRiaadIhadaWgaaWc baGaamOBaaqabaaakeaacaWGUbaaaaaa@4550@ ,

then we have:

v n = ( n1 ) v n1 + x n 2 x n x ¯ n +( x ¯ n x n )( x ¯ n1 ) n v n = ( n1 ) v n1 + x n 2 x n x ¯ n + x ¯ n x ¯ n1 x n x ¯ n1 n v n = ( n1 ) v n1 + x n 2 x n x ¯ n x n x ¯ n1 + x ¯ n x ¯ n1 n v n = ( n1 ) v n1 +( x n x ¯ n )( x n x ¯ n1 ) n v n = n v n1 v n1 +( x n x ¯ n )( x n x ¯ n1 ) n v n = n v n1 n + v n1 +( x n x ¯ n )( x n x ¯ n1 ) n v n = v n1 v n1 ( x n x ¯ n )( x n x ¯ n1 ) n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaacaWG2b WaaSbaaSqaaiaad6gaaeqaaOGaeyypa0ZaaSaaaeaadaqadaqaaiaa d6gacqGHsislcaaIXaaacaGLOaGaayzkaaGaamODamaaBaaaleaaca WGUbGaeyOeI0IaaGymaaqabaGccqGHRaWkcaWG4bWaa0baaSqaaiaa d6gaaeaacaaIYaaaaOGaeyOeI0IaamiEamaaBaaaleaacaWGUbaabe aakiqadIhagaqeamaaBaaaleaacaWGUbaabeaakiabgUcaRmaabmaa baGabmiEayaaraWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamiEam aaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaamaabmaabaGabmiE ayaaraWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaaaOGaayjkai aawMcaaaqaaiaad6gaaaaabaGaamODamaaBaaaleaacaWGUbaabeaa kiabg2da9maalaaabaWaaeWaaeaacaWGUbGaeyOeI0IaaGymaaGaay jkaiaawMcaaiaadAhadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqa aOGaey4kaSIaamiEamaaDaaaleaacaWGUbaabaGaaGOmaaaakiabgk HiTiaadIhadaWgaaWcbaGaamOBaaqabaGcceWG4bGbaebadaWgaaWc baGaamOBaaqabaGccqGHRaWkceWG4bGbaebadaWgaaWcbaGaamOBaa qabaGcceWG4bGbaebadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqa aOGaeyOeI0IaamiEamaaBaaaleaacaWGUbaabeaakiqadIhagaqeam aaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaaakeaacaWGUbaaaaqa aiaadAhadaWgaaWcbaGaamOBaaqabaGccqGH9aqpdaWcaaqaamaabm aabaGaamOBaiabgkHiTiaaigdaaiaawIcacaGLPaaacaWG2bWaaSba aSqaaiaad6gacqGHsislcaaIXaaabeaakiabgUcaRiaadIhadaqhaa WcbaGaamOBaaqaaiaaikdaaaGccqGHsislcaWG4bWaaSbaaSqaaiaa d6gaaeqaaOGabmiEayaaraWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0 IaamiEamaaBaaaleaacaWGUbaabeaakiqadIhagaqeamaaBaaaleaa caWGUbGaeyOeI0IaaGymaaqabaGccqGHRaWkceWG4bGbaebadaWgaa WcbaGaamOBaaqabaGcceWG4bGbaebadaWgaaWcbaGaamOBaiabgkHi TiaaigdaaeqaaaGcbaGaamOBaaaaaeaacaWG2bWaaSbaaSqaaiaad6 gaaeqaaOGaeyypa0ZaaSaaaeaadaqadaqaaiaad6gacqGHsislcaaI XaaacaGLOaGaayzkaaGaamODamaaBaaaleaacaWGUbGaeyOeI0IaaG ymaaqabaGccqGHRaWkdaqadaqaaiaadIhadaWgaaWcbaGaamOBaaqa baGccqGHsislceWG4bGbaebadaWgaaWcbaGaamOBaaqabaaakiaawI cacaGLPaaadaqadaqaaiaadIhadaWgaaWcbaGaamOBaaqabaGccqGH sislceWG4bGbaebadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaa GccaGLOaGaayzkaaaabaGaamOBaaaaaeaacaWG2bWaaSbaaSqaaiaa d6gaaeqaaOGaeyypa0ZaaSaaaeaacaWGUbGaamODamaaBaaaleaaca WGUbGaeyOeI0IaaGymaaqabaGccqGHsislcaWG2bWaaSbaaSqaaiaa d6gacqGHsislcaaIXaaabeaakiabgUcaRmaabmaabaGaamiEamaaBa aaleaacaWGUbaabeaakiabgkHiTiqadIhagaqeamaaBaaaleaacaWG UbaabeaaaOGaayjkaiaawMcaamaabmaabaGaamiEamaaBaaaleaaca WGUbaabeaakiabgkHiTiqadIhagaqeamaaBaaaleaacaWGUbGaeyOe I0IaaGymaaqabaaakiaawIcacaGLPaaaaeaacaWGUbaaaaqaaiaadA hadaWgaaWcbaGaamOBaaqabaGccqGH9aqpdaWcaaqaamaaKiaabaGa amOBaaaacaWG2bWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaaaO qaamaaKiaabaGaamOBaaaaaaGaey4kaSYaaSaaaeaacqGHsislcaWG 2bWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiabgUcaRmaabm aabaGaamiEamaaBaaaleaacaWGUbaabeaakiabgkHiTiqadIhagaqe amaaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaamaabmaabaGaam iEamaaBaaaleaacaWGUbaabeaakiabgkHiTiqadIhagaqeamaaBaaa leaacaWGUbGaeyOeI0IaaGymaaqabaaakiaawIcacaGLPaaaaeaaca WGUbaaaaqaaiaadAhadaWgaaWcbaGaamOBaaqabaGccqGH9aqpcaWG 2bWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiabgkHiTmaala aabaGaamODamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccqGH sisldaqadaqaaiaadIhadaWgaaWcbaGaamOBaaqabaGccqGHsislce WG4bGbaebadaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaadaqa daqaaiaadIhadaWgaaWcbaGaamOBaaqabaGccqGHsislceWG4bGbae badaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaaGccaGLOaGaayzk aaaabaGaamOBaaaaaaaa@161D@

Therefore, the recurrence equation for the biased sample variance (a.k.a. online variance) is:

v n = v n1 v n1 ( x n x ¯ n )( x n x ¯ n1 ) n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGUbaabeaakiabg2da9iaadAhadaWgaaWcbaGaamOBaiab gkHiTiaaigdaaeqaaOGaeyOeI0YaaSaaaeaacaWG2bWaaSbaaSqaai aad6gacqGHsislcaaIXaaabeaakiabgkHiTmaabmaabaGaamiEamaa BaaaleaacaWGUbaabeaakiabgkHiTiqadIhagaqeamaaBaaaleaaca WGUbaabeaaaOGaayjkaiaawMcaamaabmaabaGaamiEamaaBaaaleaa caWGUbaabeaakiabgkHiTiqadIhagaqeamaaBaaaleaacaWGUbGaey OeI0IaaGymaaqabaaakiaawIcacaGLPaaaaeaacaWGUbaaaaaa@52F2@


Example C++ code that computes the online variance:
// Filename: main.cpp
#include <iostream>
#include <iomanip>
 
int main () {
    
    double x;
    double n = 0;
    double mean = 0;
    double variance = 0;
    double prev_mean; // previous mean
    double prev_variance; // previous variance
    
    if ( std::cin >> x ) {
        ++n;
        mean = x;
        variance = 0;
        while ( std::cin >> x ) {
            prev_mean = mean;
            prev_variance = variance;
            ++n;
            mean = prev_mean - ( prev_mean - x ) / n;
            variance = prev_variance - ( prev_variance - ( x - mean ) * ( x - prev_mean ) ) / n;
        }
    }
    
    std::cout << "n:        " << n << '\n';
    std::cout << "mean:     " << std::setprecision( 17 ) << mean     << '\n';
    std::cout << "variance: " << std::setprecision( 17 ) << variance << '\n';
    
}

Example of data.txt:
6867.55961097
32890.8902819
18178.8157597
.
.
.

Command Line:
g++ -o main.exe main.cpp -std=c++11 -march=native -O3 -Wall -Wextra -Werror -static
./main.exe < data.txt

Note: Mathematica's Variance[] function computes the unbiased sample variance, not the biased sample variance; therefore, the biased sample variance is computed in Mathematica as:

( ( Length[ list ] - 1 ) / Length[ list ] ) * Variance[ list ]