The following matrix is the two dimensional Givens Rotation from the x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F3@  axis to the y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36F5@  axis:

( cos( θ ) cos( θ+90° ) sin( θ ) sin( θ+90° ) ) ( cos( θ ) cos( θ+ π 2 ) sin( θ ) sin( θ+ π 2 ) ) ( cos( θ ) sin( θ ) sin( θ ) cos( θ ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaGabeaadaqada qaauaabeqaciaaaeaaciGGJbGaai4BaiaacohadaqadaqaaiabeI7a XbGaayjkaiaawMcaaaqaaiGacogacaGGVbGaai4CamaabmaabaGaeq iUdeNaey4kaSIaaGyoaiaaicdacqGHWcaSaiaawIcacaGLPaaaaeaa ciGGZbGaaiyAaiaac6gadaqadaqaaiabeI7aXbGaayjkaiaawMcaaa qaaiGacohacaGGPbGaaiOBamaabmaabaGaeqiUdeNaey4kaSIaaGyo aiaaicdacqGHWcaSaiaawIcacaGLPaaaaaaacaGLOaGaayzkaaaaba WaaeWaaeaafaqabeGacaaabaGaci4yaiaac+gacaGGZbWaaeWaaeaa cqaH4oqCaiaawIcacaGLPaaaaeaaciGGJbGaai4Baiaacohadaqada qaaiabeI7aXjabgUcaRmaalaaabaGaeqiWdahabaGaaGOmaaaaaiaa wIcacaGLPaaaaeaaciGGZbGaaiyAaiaac6gadaqadaqaaiabeI7aXb GaayjkaiaawMcaaaqaaiGacohacaGGPbGaaiOBamaabmaabaGaeqiU deNaey4kaSYaaSaaaeaacqaHapaCaeaacaaIYaaaaaGaayjkaiaawM caaaaaaiaawIcacaGLPaaaaeaadaqadaqaauaabeqaciaaaeaaciGG JbGaai4BaiaacohadaqadaqaaiabeI7aXbGaayjkaiaawMcaaaqaai abgkHiTiGacohacaGGPbGaaiOBamaabmaabaGaeqiUdehacaGLOaGa ayzkaaaabaGaci4CaiaacMgacaGGUbWaaeWaaeaacqaH4oqCaiaawI cacaGLPaaaaeaaciGGJbGaai4BaiaacohadaqadaqaaiabeI7aXbGa ayjkaiaawMcaaaaaaiaawIcacaGLPaaaaaaa@941A@  

This matrix rotates two dimensional column vectors about the origin of the x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@  - y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36F5@  plane.

 

For instance, if we rotate the unit column vector ( 1,0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIXaGaaiilaiaaicdaaiaawIcacaGLPaaaaaa@39A5@  using this Givens Rotation, then we have:

( cos( θ ) cos( θ+90° ) sin( θ ) sin( θ+90° ) )( 1 0 ) ( cos( θ ) cos( θ+ π 2 ) sin( θ ) sin( θ+ π 2 ) )( 1 0 ) ( cos( θ ) sin( θ ) sin( θ ) cos( θ ) )( 1 0 ) ( cos( θ ) sin( θ ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaGabeaadaqada qaauaabeqaciaaaeaaciGGJbGaai4BaiaacohadaqadaqaaiabeI7a XbGaayjkaiaawMcaaaqaaiGacogacaGGVbGaai4CamaabmaabaGaeq iUdeNaey4kaSIaaGyoaiaaicdacqGHWcaSaiaawIcacaGLPaaaaeaa ciGGZbGaaiyAaiaac6gadaqadaqaaiabeI7aXbGaayjkaiaawMcaaa qaaiGacohacaGGPbGaaiOBamaabmaabaGaeqiUdeNaey4kaSIaaGyo aiaaicdacqGHWcaSaiaawIcacaGLPaaaaaaacaGLOaGaayzkaaWaae WaaeaafaqabeGabaaabaGaaGymaaqaaiaaicdaaaaacaGLOaGaayzk aaaabaWaaeWaaeaafaqabeGacaaabaGaci4yaiaac+gacaGGZbWaae WaaeaacqaH4oqCaiaawIcacaGLPaaaaeaaciGGJbGaai4Baiaacoha daqadaqaaiabeI7aXjabgUcaRmaalaaabaGaeqiWdahabaGaaGOmaa aaaiaawIcacaGLPaaaaeaaciGGZbGaaiyAaiaac6gadaqadaqaaiab eI7aXbGaayjkaiaawMcaaaqaaiGacohacaGGPbGaaiOBamaabmaaba GaeqiUdeNaey4kaSYaaSaaaeaacqaHapaCaeaacaaIYaaaaaGaayjk aiaawMcaaaaaaiaawIcacaGLPaaadaqadaqaauaabeqaceaaaeaaca aIXaaabaGaaGimaaaaaiaawIcacaGLPaaaaeaadaqadaqaauaabeqa ciaaaeaaciGGJbGaai4BaiaacohadaqadaqaaiabeI7aXbGaayjkai aawMcaaaqaaiabgkHiTiGacohacaGGPbGaaiOBamaabmaabaGaeqiU dehacaGLOaGaayzkaaaabaGaci4CaiaacMgacaGGUbWaaeWaaeaacq aH4oqCaiaawIcacaGLPaaaaeaaciGGJbGaai4Baiaacohadaqadaqa aiabeI7aXbGaayjkaiaawMcaaaaaaiaawIcacaGLPaaadaqadaqaau aabeqaceaaaeaacaaIXaaabaGaaGimaaaaaiaawIcacaGLPaaaaeaa daqadaqaauaabeqaceaaaeaaciGGJbGaai4Baiaacohadaqadaqaai abeI7aXbGaayjkaiaawMcaaaqaaiGacohacaGGPbGaaiOBamaabmaa baGaeqiUdehacaGLOaGaayzkaaaaaaGaayjkaiaawMcaaaaaaa@AAFB@

 

Therefore, if we rotate the column vector ( x,y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG4bGaaiilaiaadMhaaiaawIcacaGLPaaaaaa@3A2B@ , then we have:

( cos( θ ) cos( θ+90° ) sin( θ ) sin( θ+90° ) )( x y ) ( cos( θ ) cos( θ+ π 2 ) sin( θ ) sin( θ+ π 2 ) )( x y ) ( cos( θ ) sin( θ ) sin( θ ) cos( θ ) )( x y ) ( xcos( θ )ysin( θ ) xsin( θ )+ycos( θ ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaGabeaadaqada qaauaabeqaciaaaeaaciGGJbGaai4BaiaacohadaqadaqaaiabeI7a XbGaayjkaiaawMcaaaqaaiGacogacaGGVbGaai4CamaabmaabaGaeq iUdeNaey4kaSIaaGyoaiaaicdacqGHWcaSaiaawIcacaGLPaaaaeaa ciGGZbGaaiyAaiaac6gadaqadaqaaiabeI7aXbGaayjkaiaawMcaaa qaaiGacohacaGGPbGaaiOBamaabmaabaGaeqiUdeNaey4kaSIaaGyo aiaaicdacqGHWcaSaiaawIcacaGLPaaaaaaacaGLOaGaayzkaaWaae WaaeaafaqabeGabaaabaGaamiEaaqaaiaadMhaaaaacaGLOaGaayzk aaaabaWaaeWaaeaafaqabeGacaaabaGaci4yaiaac+gacaGGZbWaae WaaeaacqaH4oqCaiaawIcacaGLPaaaaeaaciGGJbGaai4Baiaacoha daqadaqaaiabeI7aXjabgUcaRmaalaaabaGaeqiWdahabaGaaGOmaa aaaiaawIcacaGLPaaaaeaaciGGZbGaaiyAaiaac6gadaqadaqaaiab eI7aXbGaayjkaiaawMcaaaqaaiGacohacaGGPbGaaiOBamaabmaaba GaeqiUdeNaey4kaSYaaSaaaeaacqaHapaCaeaacaaIYaaaaaGaayjk aiaawMcaaaaaaiaawIcacaGLPaaadaqadaqaauaabeqaceaaaeaaca WG4baabaGaamyEaaaaaiaawIcacaGLPaaaaeaadaqadaqaauaabeqa ciaaaeaaciGGJbGaai4BaiaacohadaqadaqaaiabeI7aXbGaayjkai aawMcaaaqaaiabgkHiTiGacohacaGGPbGaaiOBamaabmaabaGaeqiU dehacaGLOaGaayzkaaaabaGaci4CaiaacMgacaGGUbWaaeWaaeaacq aH4oqCaiaawIcacaGLPaaaaeaaciGGJbGaai4Baiaacohadaqadaqa aiabeI7aXbGaayjkaiaawMcaaaaaaiaawIcacaGLPaaadaqadaqaau aabeqaceaaaeaacaWG4baabaGaamyEaaaaaiaawIcacaGLPaaaaeaa daqadaqaauaabeqaceaaaeaacaWG4bGaci4yaiaac+gacaGGZbWaae WaaeaacqaH4oqCaiaawIcacaGLPaaacqGHsislcaWG5bGaci4Caiaa cMgacaGGUbWaaeWaaeaacqaH4oqCaiaawIcacaGLPaaaaeaacaWG4b Gaci4CaiaacMgacaGGUbWaaeWaaeaacqaH4oqCaiaawIcacaGLPaaa cqGHRaWkcaWG5bGaci4yaiaac+gacaGGZbWaaeWaaeaacqaH4oqCai aawIcacaGLPaaaaaaacaGLOaGaayzkaaaaaaa@BE7B@  

and to rotate that column vector ( x,y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG4bGaaiilaiaadMhaaiaawIcacaGLPaaaaaa@3A2B@  back to the x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@  axis so that the y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36F5@  value is zero, we would have:

( cos( θ ) cos( θ+90° ) sin( θ ) sin( θ+90° ) )( x y )=( x 0 ) ( cos( θ ) cos( θ+ π 2 ) sin( θ ) sin( θ+ π 2 ) )( x y )=( x 0 ) ( cos( θ ) sin( θ ) sin( θ ) cos( θ ) )( x y )=( x 0 ) ( xcos( θ )ysin( θ ) xsin( θ )+ycos( θ ) )=( x 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaadaqada qaauaabeqaciaaaeaaciGGJbGaai4BaiaacohadaqadaqaaiabeI7a XbGaayjkaiaawMcaaaqaaiGacogacaGGVbGaai4CamaabmaabaGaeq iUdeNaey4kaSIaaGyoaiaaicdacqGHWcaSaiaawIcacaGLPaaaaeaa ciGGZbGaaiyAaiaac6gadaqadaqaaiabeI7aXbGaayjkaiaawMcaaa qaaiGacohacaGGPbGaaiOBamaabmaabaGaeqiUdeNaey4kaSIaaGyo aiaaicdacqGHWcaSaiaawIcacaGLPaaaaaaacaGLOaGaayzkaaWaae WaaeaafaqabeGabaaabaGaamiEaaqaaiaadMhaaaaacaGLOaGaayzk aaGaeyypa0ZaaeWaaeaafaqabeGabaaabaGabmiEayaafaaabaGaaG imaaaaaiaawIcacaGLPaaaaeaadaqadaqaauaabeqaciaaaeaaciGG JbGaai4BaiaacohadaqadaqaaiabeI7aXbGaayjkaiaawMcaaaqaai GacogacaGGVbGaai4CamaabmaabaGaeqiUdeNaey4kaSYaaSaaaeaa cqaHapaCaeaacaaIYaaaaaGaayjkaiaawMcaaaqaaiGacohacaGGPb GaaiOBamaabmaabaGaeqiUdehacaGLOaGaayzkaaaabaGaci4Caiaa cMgacaGGUbWaaeWaaeaacqaH4oqCcqGHRaWkdaWcaaqaaiabec8aWb qaaiaaikdaaaaacaGLOaGaayzkaaaaaaGaayjkaiaawMcaamaabmaa baqbaeqabiqaaaqaaiaadIhaaeaacaWG5baaaaGaayjkaiaawMcaai abg2da9maabmaabaqbaeqabiqaaaqaaiqadIhagaqbaaqaaiaaicda aaaacaGLOaGaayzkaaaabaWaaeWaaeaafaqabeGacaaabaGaci4yai aac+gacaGGZbWaaeWaaeaacqaH4oqCaiaawIcacaGLPaaaaeaacqGH sislciGGZbGaaiyAaiaac6gadaqadaqaaiabeI7aXbGaayjkaiaawM caaaqaaiGacohacaGGPbGaaiOBamaabmaabaGaeqiUdehacaGLOaGa ayzkaaaabaGaci4yaiaac+gacaGGZbWaaeWaaeaacqaH4oqCaiaawI cacaGLPaaaaaaacaGLOaGaayzkaaWaaeWaaeaafaqabeGabaaabaGa amiEaaqaaiaadMhaaaaacaGLOaGaayzkaaGaeyypa0ZaaeWaaeaafa qabeGabaaabaGabmiEayaafaaabaGaaGimaaaaaiaawIcacaGLPaaa aeaadaqadaqaauaabeqaceaaaeaacaWG4bGaci4yaiaac+gacaGGZb WaaeWaaeaacqaH4oqCaiaawIcacaGLPaaacqGHsislcaWG5bGaci4C aiaacMgacaGGUbWaaeWaaeaacqaH4oqCaiaawIcacaGLPaaaaeaaca WG4bGaci4CaiaacMgacaGGUbWaaeWaaeaacqaH4oqCaiaawIcacaGL PaaacqGHRaWkcaWG5bGaci4yaiaac+gacaGGZbWaaeWaaeaacqaH4o qCaiaawIcacaGLPaaaaaaacaGLOaGaayzkaaGaeyypa0ZaaeWaaeaa faqabeGabaaabaGabmiEayaafaaabaGaaGimaaaaaiaawIcacaGLPa aaaaaa@CFF9@

So, we need to use an angle θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@37AD@  such that the y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36F5@  value goes to zero.  Let’s concentrate on that lower equation:

xsin( θ )+ycos( θ )=0 xsin( θ )=ycos( θ ) sin( θ ) cos( θ ) = y x tan( θ )= y x θ=arctan( y x ) θ=arctan( y x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaacaWG4b Gaci4CaiaacMgacaGGUbWaaeWaaeaacqaH4oqCaiaawIcacaGLPaaa cqGHRaWkcaWG5bGaci4yaiaac+gacaGGZbWaaeWaaeaacqaH4oqCai aawIcacaGLPaaacqGH9aqpcaaIWaaabaGaamiEaiGacohacaGGPbGa aiOBamaabmaabaGaeqiUdehacaGLOaGaayzkaaGaeyypa0JaeyOeI0 IaamyEaiGacogacaGGVbGaai4CamaabmaabaGaeqiUdehacaGLOaGa ayzkaaaabaWaaSaaaeaaciGGZbGaaiyAaiaac6gadaqadaqaaiabeI 7aXbGaayjkaiaawMcaaaqaaiGacogacaGGVbGaai4CamaabmaabaGa eqiUdehacaGLOaGaayzkaaaaaiabg2da9iabgkHiTmaalaaabaGaam yEaaqaaiaadIhaaaaabaGaciiDaiaacggacaGGUbWaaeWaaeaacqaH 4oqCaiaawIcacaGLPaaacqGH9aqpcqGHsisldaWcaaqaaiaadMhaae aacaWG4baaaaqaaiabeI7aXjabg2da9iGacggacaGGYbGaai4yaiaa cshacaGGHbGaaiOBamaabmaabaGaeyOeI0YaaSaaaeaacaWG5baaba GaamiEaaaaaiaawIcacaGLPaaaaeaacqaH4oqCcqGH9aqpcqGHsisl ciGGHbGaaiOCaiaacogacaGG0bGaaiyyaiaac6gadaqadaqaamaala aabaGaamyEaaqaaiaadIhaaaaacaGLOaGaayzkaaaaaaa@8AC7@  

Remember: arctan( y x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyyaiaack hacaGGJbGaaiiDaiaacggacaGGUbWaaeWaaeaadaWcaaqaaiaadMha aeaacaWG4baaaaGaayjkaiaawMcaaaaa@3F1E@  is atan2( y, x ) in C/C++ and ArcTan[ x, y ] in Mathematica.

 

Therefore, when we rotate the column vector ( x,y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG4bGaaiilaiaadMhaaiaawIcacaGLPaaaaaa@3A2B@  back to the x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@  axis so that the y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36F5@  value is zero, we have:

( cos( arctan( y x ) ) cos( arctan( y x )+90° ) sin( arctan( y x ) ) sin( arctan( y x )+90° ) )( x y ) ( cos( arctan( y x ) ) cos( arctan( y x )+ π 2 ) sin( arctan( y x ) ) sin( arctan( y x )+ π 2 ) )( x y ) ( cos( arctan( y x ) ) sin( arctan( y x ) ) sin( arctan( y x ) ) cos( arctan( y x ) ) )( x y ) ( x x 2 + y 2 ( y x 2 + y 2 ) y x 2 + y 2 x x 2 + y 2 )( x y ) ( x 2 x 2 + y 2 + y 2 x 2 + y 2 xy x 2 + y 2 + xy x 2 + y 2 ) ( x 2 + y 2 x 2 + y 2 0 ) ( x 2 + y 2 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaGabeaadaqada qaauaabeqaciaaaeaaciGGJbGaai4BaiaacohadaqadaqaaiabgkHi TiGacggacaGGYbGaai4yaiaacshacaGGHbGaaiOBamaabmaabaWaaS aaaeaacaWG5baabaGaamiEaaaaaiaawIcacaGLPaaaaiaawIcacaGL PaaaaeaaciGGJbGaai4BaiaacohadaqadaqaaiabgkHiTiGacggaca GGYbGaai4yaiaacshacaGGHbGaaiOBamaabmaabaWaaSaaaeaacaWG 5baabaGaamiEaaaaaiaawIcacaGLPaaacqGHRaWkcaaI5aGaaGimai abgclaWcGaayjkaiaawMcaaaqaaiGacohacaGGPbGaaiOBamaabmaa baGaeyOeI0IaciyyaiaackhacaGGJbGaaiiDaiaacggacaGGUbWaae WaaeaadaWcaaqaaiaadMhaaeaacaWG4baaaaGaayjkaiaawMcaaaGa ayjkaiaawMcaaaqaaiGacohacaGGPbGaaiOBamaabmaabaGaeyOeI0 IaciyyaiaackhacaGGJbGaaiiDaiaacggacaGGUbWaaeWaaeaadaWc aaqaaiaadMhaaeaacaWG4baaaaGaayjkaiaawMcaaiabgUcaRiaaiM dacaaIWaGaeyiSaalacaGLOaGaayzkaaaaaaGaayjkaiaawMcaamaa bmaabaqbaeqabiqaaaqaaiaadIhaaeaacaWG5baaaaGaayjkaiaawM caaaqaamaabmaabaqbaeqabiGaaaqaaiGacogacaGGVbGaai4Camaa bmaabaGaeyOeI0IaciyyaiaackhacaGGJbGaaiiDaiaacggacaGGUb WaaeWaaeaadaWcaaqaaiaadMhaaeaacaWG4baaaaGaayjkaiaawMca aaGaayjkaiaawMcaaaqaaiGacogacaGGVbGaai4CamaabmaabaGaey OeI0IaciyyaiaackhacaGGJbGaaiiDaiaacggacaGGUbWaaeWaaeaa daWcaaqaaiaadMhaaeaacaWG4baaaaGaayjkaiaawMcaaiabgUcaRm aalaaabaGaeqiWdahabaGaaGOmaaaaaiaawIcacaGLPaaaaeaaciGG ZbGaaiyAaiaac6gadaqadaqaaiabgkHiTiGacggacaGGYbGaai4yai aacshacaGGHbGaaiOBamaabmaabaWaaSaaaeaacaWG5baabaGaamiE aaaaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaeaaciGGZbGaaiyAai aac6gadaqadaqaaiabgkHiTiGacggacaGGYbGaai4yaiaacshacaGG HbGaaiOBamaabmaabaWaaSaaaeaacaWG5baabaGaamiEaaaaaiaawI cacaGLPaaacqGHRaWkdaWcaaqaaiabec8aWbqaaiaaikdaaaaacaGL OaGaayzkaaaaaaGaayjkaiaawMcaamaabmaabaqbaeqabiqaaaqaai aadIhaaeaacaWG5baaaaGaayjkaiaawMcaaaqaamaabmaabaqbaeqa biGaaaqaaiGacogacaGGVbGaai4CamaabmaabaGaeyOeI0Iaciyyai aackhacaGGJbGaaiiDaiaacggacaGGUbWaaeWaaeaadaWcaaqaaiaa dMhaaeaacaWG4baaaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaqaai abgkHiTiGacohacaGGPbGaaiOBamaabmaabaGaeyOeI0Iaciyyaiaa ckhacaGGJbGaaiiDaiaacggacaGGUbWaaeWaaeaadaWcaaqaaiaadM haaeaacaWG4baaaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaqaaiGa cohacaGGPbGaaiOBamaabmaabaGaeyOeI0IaciyyaiaackhacaGGJb GaaiiDaiaacggacaGGUbWaaeWaaeaadaWcaaqaaiaadMhaaeaacaWG 4baaaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaqaaiGacogacaGGVb Gaai4CamaabmaabaGaeyOeI0IaciyyaiaackhacaGGJbGaaiiDaiaa cggacaGGUbWaaeWaaeaadaWcaaqaaiaadMhaaeaacaWG4baaaaGaay jkaiaawMcaaaGaayjkaiaawMcaaaaaaiaawIcacaGLPaaadaqadaqa auaabeqaceaaaeaacaWG4baabaGaamyEaaaaaiaawIcacaGLPaaaae aadaqadaqaauaabeqaciaaaeaadaWcaaqaaiaadIhaaeaadaGcaaqa aiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG5bWaaWbaaS qabeaacaaIYaaaaaqabaaaaaGcbaGaeyOeI0YaaeWaaeaacqGHsisl daWcaaqaaiaadMhaaeaadaGcaaqaaiaadIhadaahaaWcbeqaaiaaik daaaGccqGHRaWkcaWG5bWaaWbaaSqabeaacaaIYaaaaaqabaaaaaGc caGLOaGaayzkaaaabaGaeyOeI0YaaSaaaeaacaWG5baabaWaaOaaae aacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyEamaaCaaa leqabaGaaGOmaaaaaeqaaaaaaOqaamaalaaabaGaamiEaaqaamaaka aabaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadMhadaah aaWcbeqaaiaaikdaaaaabeaaaaaaaaGccaGLOaGaayzkaaWaaeWaae aafaqabeGabaaabaGaamiEaaqaaiaadMhaaaaacaGLOaGaayzkaaaa baWaaeWaaeaafaqabeGabaaabaWaaSaaaeaacaWG4bWaaWbaaSqabe aacaaIYaaaaaGcbaWaaOaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaa aOGaey4kaSIaamyEamaaCaaaleqabaGaaGOmaaaaaeqaaaaakiabgU caRmaalaaabaGaamyEamaaCaaaleqabaGaaGOmaaaaaOqaamaakaaa baGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadMhadaahaa WcbeqaaiaaikdaaaaabeaaaaaakeaacqGHsisldaWcaaqaaiaadIha caWG5baabaWaaOaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey 4kaSIaamyEamaaCaaaleqabaGaaGOmaaaaaeqaaaaakiabgUcaRmaa laaabaGaamiEaiaadMhaaeaadaGcaaqaaiaadIhadaahaaWcbeqaai aaikdaaaGccqGHRaWkcaWG5bWaaWbaaSqabeaacaaIYaaaaaqabaaa aaaaaOGaayjkaiaawMcaaaqaamaabmaabaqbaeqabiqaaaqaamaala aabaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadMhadaah aaWcbeqaaiaaikdaaaaakeaadaGcaaqaaiaadIhadaahaaWcbeqaai aaikdaaaGccqGHRaWkcaWG5bWaaWbaaSqabeaacaaIYaaaaaqabaaa aaGcbaGaaGimaaaaaiaawIcacaGLPaaaaeaadaqadaqaauaabeqace aaaeaadaGcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWk caWG5bWaaWbaaSqabeaacaaIYaaaaaqabaaakeaacaaIWaaaaaGaay jkaiaawMcaaaaaaa@56F8@  

Since the radius r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@36EE@  from the origin to the column vector ( x,y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG4bGaaiilaiaadMhaaiaawIcacaGLPaaaaaa@3A2B@  is x 2 + y 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca WG4bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyEamaaCaaaleqa baGaaGOmaaaaaeqaaaaa@3AC0@  (also known as the norm), then we also have:

( x 2 + y 2 0 ) ( r 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaGabeaadaqada qaauaabeqaceaaaeaadaGcaaqaaiaadIhadaahaaWcbeqaaiaaikda aaGccqGHRaWkcaWG5bWaaWbaaSqabeaacaaIYaaaaaqabaaakeaaca aIWaaaaaGaayjkaiaawMcaaaqaamaabmaabaqbaeqabiqaaaqaaiaa dkhaaeaacaaIWaaaaaGaayjkaiaawMcaaaaaaa@4069@